
ViVA: A Visualization and Analysis Tool
for Distributed Event-Based Systems

Youn Kyu Lee, Jae young Bang, Joshua Garcia, and Nenad Medvidovic
University of Southern California

Los Angeles, California, USA 90089
{younkyul, jaeyounb, joshuaga, neno}@usc.edu

ABSTRACT
Distributed event-based (DEB) systems are characterized by highly-
decoupled components that communicate by exchanging messages.
This form of communication enables flexible and scalable system
composition but also reduces understandability and maintainability
due to the indirect manner in which DEB components communicate.
To tackle this problem, we present Visualizer for eVent-based Archi-
tectures, ViVA, a tool that effectively visualizes the large number of
messages and dependencies that can be exchanged between compo-
nents and the order in which the exchange of messages occur. In
this paper, we describe the design, implementation, and key features
of ViVA. (Demo video at http://youtu.be/jHVwuR5AYgA)

1. INTRODUCTION
Distributed event-based (DEB) systems, which are often built

using message-oriented middleware (MOMs) platforms, are widely
used in many application domains, including enterprise manage-
ment, large-scale data dissemination, and real-time monitoring. In
2005, the market size for MOM licenses was about one billion USD
[2]; by the end of the decade, the market for all middleware licenses
was nearly 20 billion USD, with MOM among the fastest growing
middleware platform types [1]. Unlike traditional systems where
components directly invoke each other, DEB systems use a form of
implicit invocation where components communicate by exchanging
messages over connectors. This form of communication decouples
the DEB systems’ constituent components, and in turn facilitates
development of highly flexible, resilient, scalable, concurrent, and
heterogeneous distributed applications.

While DEB systems enable the desirable features previously men-
tioned, these systems are also comparatively harder to comprehend
because the exchanged messages are obscured by the ambiguous
interfaces of DEB components [3]. These interfaces do not reveal
the specific types of messages that may be sent or received by a
component. Thus, determining causality relationships between mes-
sages or what parts of a system may be affected by a maintenance
task is challenging in a DEB system [7, 4]. This reduces the under-
standability of the system and hampers development activities such
as debugging and refactoring. The reduced understandability may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ICSE ’14 May 31 - June 07 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2768-8/14/06 ... $15.00.

also hamper engineering teams that experience high turnover rates
as it is likely to increase the initial learning curve.

We posit that engineers can improve their understanding of the
DEB systems on which they are working with the aid of proper visu-
alization. Although some existing techniques are able to identify the
types of messages exchanged between components [4], no technique
exists that can effectively visualize (1) the large number of messages
and dependencies between them that exist in DEB systems and (2)
the order in which the exchange of messages occur.

In this paper, we present Visualizer for eVent-based Architectures,
ViVA, a tool that aids engineers in understanding how messages are
exchanged between a DEB system’s components. ViVA has four
key features. First, ViVA initially depicts the entire architecture
including the key architectural elements, such as components, con-
nectors, and the relationships among them. Second, ViVA presents
the messages that are exchanged between the components, along
with the order in which these messages are generated during run-
time. ViVA also supports monitoring whether particular messages
or a particular order of message exchanges occur. Third, to deal
with the overwhelming number of messages and the dependencies
between them that DEB systems commonly have, ViVA provides a
feature called filtered visualization that focuses only on information
regarding components and messages in which engineers state an
explicit interest. Finally, ViVA can depict both static and dynamic
dependencies between components. To this end, we have integrated
an existing static analysis tool, to be used in concert with ViVA’s
native dynamic analysis capability.

The rest of this paper is organized as follows. Section 2 enumer-
ates the techniques for improving DEB system comprehension that
ViVA adopts. Section 3 depicts the overall ViVA architecture along
with the description of each major component, as well as the details
of ViVA’s implementation. Section 4 highlights ViVA’s key features.
Section 5 concludes the paper.

2. OVERVIEW OF ViVA
ViVA relies on the integration of three key techniques: runtime

visualization, message-log replay, and combined static and dynamic
analysis. We elaborate on each in this section.
Runtime Visualization. Runtime Visualization is a powerful meth-
od for understanding a software system as it can transform the raw
data generated by a running system into a form that is more intuitive
for human comprehension. Runtime visualization can help software
engineers in different ways. For instance, engineers can much
more readily grasp the system’s overall architecture by studying the
visualization than by relying on the original source code or the raw
runtime data. Moreover, an appropriate visualization can inform
engineers interested in outliers by identifying and highlighting them,
which could be costly with raw data [5].

Target Code

ViVA Crawler

ViVA Main

ViVA I/O

Static-Dependency

Extractor

(Eos)

Adaptor Connector

ViVA-Core

Transformed

Target Code

Static Analysis

Information

Visualized

Architectural Information
Component

Extensible Component

Connector

External Component

User

Command

Visualized

Outputs

External Output Depictor

User

Command

Visualized

Outputs

User

Command

Information

Request

Architectural

Information MOM
Platform

(PrismMW
-Vis)

Visualization

Information
User-Command

Request

Engineer

User/Tool Interaction

Data Channel

Customizable Data Channel

Visualized

Architectural Information

Middleware

Transformed

Target Code

Static Analysis

Information

Static-

Dependency

Information

Data

Access

Connector

Figure 1: Overview of ViVA’s Architecture

ViVA is able to visualize the architecture of a DEB system and il-
lustrate its key architectural elements: components, connectors, their
interdependencies, and their exchange of events (i.e., messages).
ViVA also implements a visualization of message chronology [5]: it
displays messages transferred between components during execu-
tion time in the order in which they are generated.
Message-Log Replay. ViVA can also visualize recorded messages
after the fact, in the order they were sent. We refer to this as message-
log replay. ViVA implements message-log replay by recording the
message exchange between components and connectors, and by
providing the engineer a “remote controller” to replay the message-
exchange history forward and backward. Engineers may exploit
this feature to identify unexpected message-exchange behavior or
to establish that desired behavior is missing. Furthermore, if the
execution fails, a replay execution can be used to help track down
the failure and its causes.
Combined Static-Dynamic Analysis. Static and dynamic analysis
have been shown to be effective software change impact analysis
methods [10] that can complement each other. Static analysis tech-
niques can consider all possible control-flow paths, which can result
in an over-approximation of the dependencies in a system. In con-
trast, dynamic analysis techniques can be more precise, but only
consider information along paths that have been executed. ViVA
adopts both methods and provides the engineers with the intersec-
tion of their results. In turn, this has the potential to yield more
accurate impact analysis.

3. ViVA ARCHITECTURE
Figure 1 depicts ViVA’s architecture. The architecture comprises

three major subsystems: ViVA Core, Static-Dependency Extractor,
and Output Depictor. ViVA Core is responsible for collecting and
processing the analysis information to be visualized, and for manag-
ing the integration and the interaction with the other two subsystems,
both of which have been integrated off-the-shelf. ViVA Core relies

on a MOM platform that supports recording of messages exchanged
between components. In the case of message-log replay, the MOM
platform continuously records exchanged messages until it receives
a stop request. Afterwards, the MOM platform transfers the recorded
messages to ViVA Core. In the rest of this section, we describe the
details of ViVA’s three subsystems and their implementations.

3.1 ViVA Core
ViVA Core comprises three distinct components: ViVA Main, ViVA

Crawler, and ViVA I/O.
ViVA Main runs the dynamic analysis computation, sorts and

searches the collected application messages, and manipulates the
information to be presented to engineers. ViVA Main’s dynamic
analysis monitors messages at the incoming and outgoing interfaces
of a DEB component to determine their inter-dependencies. ViVA’s
MOM platform records all messages at these interfaces and makes
them accessible to ViVA Main. The MOM platform adds a unique ID
to each message that is sent by a component. ViVA Main determines
dependencies by checking the IDs of sent and received messages: it
identifies the component where each message has been generated
and the components that receive that message. ViVA Main also sorts
recorded messages in temporal order and generates visualization
information to be presented via ViVA I/O or Output Depictor.

ViVA Crawler collects the structural information of the DEB appli-
cation’s target code. This information includes how each component
and connector of the application are initialized and composed.

ViVA I/O interacts with the engineer and the two external subsys-
tems. ViVA I/O’s GUI visualizes architectural information received
from ViVA Main and shows ViVA’s status. This information includes
coordinates, colors, types of architectural elements and messages,
as well as their relationships. ViVA I/O also forwards the analysis
results received from Static-Dependency Extractor to ViVA Main.
In case Output Depictor has been connected, ViVA I/O forwards the
visualization information to the Output Depictor.

3.2 Static-Dependency Extractor
Static-Dependency Extractor identifies message-based dependen-

cies using static analysis. These dependencies include the types of
messages that each component sends and the corresponding com-
ponents that receive those message types. Through the use of an
explicit data-access connector [9], ViVA is able to integrate with
different Static-Dependency Extractors.

3.3 Output Depictor
In addition to its default visualization, ViVA also supports vi-

sualization through Output Depictor, an external and pluggable
component. Output Depictor allows engineers to customize nota-
tions in their visualization and renders architectural information sent
from ViVA I/O in a predefined format specified through a metamodel.

3.4 ViVA Implementation
Both ViVA Core and the target applications it visualizes are im-

plemented in Java and run on PrismMW-Vis, a specialized version
of Prism-MW [8]. Prism-MW is an extensible MOM platform that
allows a developer to implement applications using predefined archi-
tectural constructs, such as components and connectors. Prism-MW
is chosen because of its extensibility and support for different archi-
tectural styles, types of connectors, and implementation languages.
PrismMW-Vis extends Prism-MW by additionally providing the
ability to record information about message exchanges as an array
structure and to share them with ViVA Core. Prism-MW provides
implementations of message interfaces. Messages in Prism-MW
follow a predefined format that includes a name and a time stamp,
which are used for routing. During runtime, PrismMW-Vis records
the information about messages into two separate fixed-size arrays,
one for sent and the other for received messages. Since ViVA Core
runs on PrismMW-Vis, ViVA Main can directly access the arrays for
the recorded information about messages.

ViVA Crawler must be embedded in the target code so that it
can access and analyze the architectural configuration, i.e., the set
of associations between components and connectors, of a DEB
application. The architectural configuration is explicitly specified
using PrismMW-Vis. To embed ViVA Crawler in the target code, we
add a pre-compiled Java class file that implements ViVA Crawler to
the target code.

We selected Generic Modeling Environment (GME) [6] as Vi-
VA’s Output Depictor. GME is a domain-specific modeling tool
that supports meta-modeling, provides APIs for model manipula-
tion, visualizes models, and supports facilities for users to interact
with the model. We created a new modeling notation for ViVA
by specifying a meta-model in GME. This notation includes only
the essential information of the architecture visualization. ViVA
invokes the model manipulation APIs of GME through the adaptor
connector (shown in Figure 1) to present the output of the requested
ViVA function from ViVA I/O.

For ViVA’s Static-Dependency Extractor, we chose Eos [4]. Eos
is a summary-based iterative data-flow analysis that computes the
types of messages in a DEB application, the message types’ con-
stituent attributes, and the message-flow dependencies between
components. ViVA Core interacts with Static-Dependency Extractor
(i.e., Eos) via a data-access connector: one subsystem writes the
relevant information to a file, and the connector enables the other
subsystem to access that information without directly coupling the
two subsystems.

4. KEY ViVA FEATURES
In this section, we describe ViVA’s four key features. These

features are intended to help engineers understand complex system

structures that have large numbers of components, connectors, and
message dependencies. The features also give engineers the ability
to track sequences of message exchanges, in order to find errors or
simply to improve their understanding of how the system works.
Each feature consists of one or more associated operations accessed
via the ViVA console as shown in Figure 2.
Visualizing Entire Architecture. When first encountering a DEB
system, an engineer can benefit from seeing all of its components,
connectors, and message dependencies. To this end, ViVA provides
an operation, called visualize, that displays the entire architec-
ture of the target system. The visualize operation depicts the
system’s components as light blue rectangles, connectors as gray
rounded rectangles, internal connections as black lines, and external
connections as blue lines. Internal connections are associations
between components and connectors that are deployed on the same
host. External connections are associations between components
and connectors that are deployed across different hosts.

As part of the visualize operation, an engineer can request to
see all messages exchanged during a particular run of the application.
In response, ViVA displays the messages as scrolling lists inside the
rectangles of the sending and receiving components. The shading
of the components that did not send or receive any messages during
this run changes to dark blue. Figure 2 shows an example of this
visualization.
Visualizing Partial Architecture. A target system may have a large
number of messages, dependencies, components, and/or connectors.
Displaying the system in its entirety may result in an incompre-
hensible visualization. To deal with this situation, ViVA provides
an operation called filter. This operation allows engineers to
focus on a particular part of the target system. Once an engineer
inputs the names or identifying keywords of the desired compo-
nents and/or connectors into ViVA’s console, ViVA responds by
depicting only the requested part of the architecture. Analogously
to the visualize operation, filter can also show the messages
exchanged among the selected components during a given run.
Tracking Message Exchanges. Filtering for particular components
and connectors can help in developing an understanding of a DEB
system. Another level of understanding is achieved by considering
the messages exchanged between components. For example, engi-
neers may be interested in whether any of the expected messages are
missing, whether unexpected messages have occurred, and whether
the order of message exchanges is different than expected.

ViVA supports tracking message exchanges and their order via
an operation, called track, that displays the messages exchanged
during a run in chronological order. Engineers can monitor message
exchanges in, both, forward and reverse orders. For a message m
that has been exchanged between components, track (1) changes
the color of the component that generated m to green and shows
m inside that component, (2) changes the color of the connector
through which m has been routed to red, and (3) changes the color
of the receiving component to green and shows m inside it. If an
engineer tracks the message exchange backwards, ViVA performs
the above three steps in reverse order.

As another aid in focusing on specific messages, ViVA provides
an operation called search. This function goes through the mes-
sage-exchange history to find whether messages with a particular
name have been generated or exchanged during runtime. ViVA
highlights the components through which the searched messages
have traveled by changing the color of the components to yellow.
Engineers may exploit this function to identify missing messages or
unintended message exchanges.

Additionally, ViVA provides an operation called check_flow,

A light blue
rectangle
represents

components.
The component

shows its
abbreviated

name.

A black line represents
internal connections
between components

and connectors.

A blue line represents external
connections between

components and connectors.

After an engineer
applies an operation,

the colors of
components and
connectors may

change accordingly.

When an engineer requests for all
exchanged messages to be
visualized, components that
handle no messages become

dark blue.

A gray-rounded
rectangle

represents a
connector.

The connector
shows its

abbreviated
name.

When an engineer
clicks an architectural
element, ViVA shows
the messages it sends
or receives and the
sequence of those

messages.

Numbers in
parentheses

indicate the order
of messages

within
components.

Trailing numbers in
square brackets

indicate the order
of messages across

components.

The ViVA Console
allows engineers to
apply operations

and monitor ViVA’s
status.

When an engineer clicks an
architectural element, ViVA

shows its full name
concatenated with its ID

number.

Figure 2: ViVA’s User Interface

which compares a message sequence occurring at runtime with a
sequence specified by an engineer. ViVA displays any mismatches
and highlights the involved components in red.
Visualizing Component Dependencies. Checking dependencies
between components helps engineers determine the potential impact
of changes to a system. However, the accuracy of the extracted
dependencies is a function of the quality of the employed analy-
sis techniques. For example, a static analysis used by ViVA may
identify spurious dependencies, and (although this is not the case
with Eos [4]) it may miss actual dependencies. Complementing
such statically extracted dependencies with dependencies obtained
by a dynamic analysis may help an engineer differentiate between
potential dependencies and those that actually occur during runtime.
As a result, the engineer can find potential errors or decide how to
restructure a system. To help engineers with such activities, ViVA
provides an operation called show_dependencies. This operation
enables component visualization based on three types of message
dependencies: static analysis-based, dynamic analysis-based, and
overlapping dependencies. Overlapping dependencies are those that
are identified by, both, the static and dynamic analyses.

To use the show_dependencies operation, an engineer accesses
the ViVA console, first to input the name of a desired component
Comp and then to invoke the operation. This invocation causes ViVA
to change the colors of components that depend on Comp based on
the type of dependency through which they have been identified:
those components that have been identified by static analysis are
colored blue; those that have been identified by dynamic analy-
sis are colored red; finally, those that are involved in overlapping
dependencies are colored purple.

5. CONCLUSION AND FUTURE WORK
Our experience with applying ViVA to several DEB systems has

shown it to be promising for their understanding, debugging, and
refactoring. We are currently pursuing a user study in which ViVA
is used in the context of different development tasks, with the goal
of assessing the extent to which ViVA helps engineers successfully
complete those tasks. Another avenue of recent work has been

leveraging ViVA to detect and visualize instances of architectural
decay [3] in a system.

6. ACKNOWLEDGEMENTS
This work has been supported by the National Science Foundation

under award numbers 1117593, 1218115, and 1321141. The work is
also supported by the Intelligence Advanced Research Projects Ac-
tivity (IARPA) under contract number number N66001-13-1-2006
and the Defense Advanced Research Projects Agency (DARPA)
under contract number N66001-11-C-4021. Finally, the work has
been supported in part by Infosys Technologies Ltd.

7. REFERENCES
[1] F. Biscotti and A. Raina. Market Share Analysis: Application

Infrastructure and Middleware Software, Worldwide, 2011.
Gartner Market Research Report, 2012.

[2] J. Correira et al. Market Share: AIM and Portal Software,
Worldwide, 2005. Gartner Market Research Report, 2006.

[3] J. Garcia et al. Toward a Catalogue of Architectural Bad
Smells. In Conf. on Quality of Software Architectures, 2009.

[4] J. Garcia et al. Identifying message flow in distributed
event-based systems. In ESEC/FSE, 2013.

[5] K. S. Gatiin. Trials and tribulations of debugging concurrency.
ACM Queue, 2004.

[6] Generic Modeling Environment (GME).
http://isis.vanderbilt.edu/projects/gme/.

[7] T. D. LaToza and B. A. Myers. Developers Ask Reachability
Questions. In ICSE, 2010.

[8] S. Malek et al. A style-aware architectural middleware for
resource-constrained, distributed systems. IEEE TSE, 2005.

[9] R. Taylor et al. Software Architecture: Foundations, Theory,
and Practice. John Wiley & Sons, 2008.

[10] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 1995.

