
CoDesign – A Highly Extensible
Collaborative Software Modeling Framework

Jae young Bang, Daniel Popescu, George Edwards, and Nenad Medvidovic
University of Southern California

Los Angeles, CA 90089-0781, USA
{jaeyounb, dpopescu, gedwards, neno}@usc.edu

Naveen Kulkarni, Girish M. Rama, and Srinivas Padmanabhuni
Infosys Technologies Limited

Bangalore 560 100, India
{Naveen_Kulkarni, Girish_Rama, srinivas_p}@infosys.com

ABSTRACT
Large, multinational software development organizations face
a number of issues in supporting software design and mod-
eling by geographically distributed architects. To address
these issues, we present CoDesign, an extensible, collabora-
tive, event-based software modeling framework developed in
a distributed, collaborative setting by our two organizations.
CoDesign’s core capabilities include real-time model syn-
chronization between geographically distributed architects,
as well as detection and resolution of a range of modeling
conflicts via several off-the-shelf conflict detection engines.

1. INTRODUCTION
In recent years, many technology companies have trans-

ferred significant portions of their software development ac-
tivities to emerging economies such as India and China [15].
At the same time, many stakeholders, such as customers and
requirements engineers, remain in developed countries. As a
result, companies have created global software development
teams in which engineers are separated by large geographic
distances. While the economic advantages of distributed
software development are real, communication challenges
must be overcome in order to fully realize these advantages.
Convincing evidence shows that geographic separation can
drastically reduce communication among coworkers [6, 7,
13]. Irregular and ineffective communication typically pre-
vents shared understanding of problems and solutions, and
incurs redundant work during software development.

In the past, global software teams relied on traditional
IDEs that were developed for co-located development teams
along with software configuration management (SCM) sys-
tems. SCM tools, such as CVS and Subversion, allow engi-
neers to work on software artifacts independently and with
reduced planning and coordination because they automat-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

ically merge modifications and detect conflicting changes.
However, SCM systems do not detect conflicts until the en-
gineers “check in” changes, at which point unnecessary or
useless effort may have already been expended. Further-
more, conflicts may be more difficult and time-consuming
to resolve at this stage.

To detect conflicts earlier and avoid costly conflict resolu-
tion, collaborative IDEs have become a popular mechanism
to provide engineers with awareness of the concurrent devel-
opment activities of their coworkers [1, 3, 5, 14]. Most col-
laborative IDEs detect conflicting concurrent modifications
to the same artifact – such as the same file – and provide
real-time notifications of these obvious, direct conflicts. A
more limited number of collaborative IDEs also detect in-
direct conflicts that require more rigorous analysis [5, 14].
For example, if one engineer changes the implementation of
a component while another engineer concurrently modifies
the component’s interface, an indirect conflict could result.

Current collaborative IDEs primarily focus on distributed
programming. Other critical development tasks, particularly
architecture design and modeling, are not readily supported,
even though these activities require frequent interactions
among team members and short feedback cycles [2]. As
a result, geographically-distributed software architects still
create and edit their models in traditional modeling environ-
ments and check-in their changes to a repository using an
SCM system. Of course, this results in all the same problems
noted above that collaborative IDEs help to solve. Like col-
laborative IDEs for programmers, software architects need
collaborative modeling environments that detect conflicts in
real-time, rather than waiting for a check-in action.

We present CoDesign, a collaborative software modeling
environment that supports system design in geographically
distributed work settings. A conceptual view of CoDesign is
depicted in Figure 1. At its core, CoDesign relies on CoW-
are, a lightweight middleware platform that (1) provides the
integration infrastructure, (2) synchronizes concurrent ed-
its made in distributed CoDesign instances, and (3) notifies
architects of conflicting modeling decisions.

CoDesign’s main contribution is an extensible conflict de-
tection framework for collaborative modeling. CoDesign uti-
lizes an event-based architecture [16] in which highly-decoupled
components—different instances of CoDesign—exchange mes-
sages via implicit invocation, allowing flexible system com-
position and adaptation. CoDesign couples this event-based

Figure 1: High-Level Architecture of CoDesign.

architecture with an API that provides explicit extension
points for plugging in conflict detection engines. This al-
lows different CoDesign clients (e.g., a UML modeling tool
or a finite state machine modeling tool) to be paired with
the most appropriate consistency checkers. It also allows
multiple consistency checkers to be used in concert, in or-
der to handle different types of modeling inconsistencies (see
Section 2). To demonstrate this capability of CoDesign, we
have integrated three off-the-shelf conflict detection engines:
Drools [8], Jess [9], and a metamodel checker [4].

In Section 2, we classify the types of conflicts that can oc-
cur during collaborative distributed architectural modeling.
Section 3 then explains the architecture and implementation
of CoDesign, with a particular focus on CoDesign’s extensi-
bility mechanism. The paper concludes with a summary of
lessons learned and a discussion of planned future work.

2. DESIGN-TIME CONFLICTS
When designing distributed collaborative systems, it is

necessary to understand the potential issues and conflicts
caused by modeling events that are generated simultane-
ously in remote locations. Two categories of issues may
occur in collaborative software modeling over the network:
parallel modification and modeling conflicts.

Parallel modification represents a situation when multiple
architects modify the same modeling object or multiple ob-
jects that are very close in a model, e.g., an object and its
parent. Parallel modification need not manifest itself as a
conflict. However, detecting it and notifying the architects
may be crucial as a warning to exercise caution and avoid
future conflicts. For example, even though two simultaneous
modifications to an object and its parent may be consistent
with one another, each of the architects making one of those
modifications may be unaware of the other architect’s ac-
tions and may be more likely to make subsequent changes
that will, in fact, result in a conflict.

A conflict, as we define it, is an issue that is engendered by
synchronization latency, that is, when one architect makes
a design decision that cannot be reconciled with another
design decision that was made previously but that has not
yet been synchronized with the architect’s local model data
(i.e., with the local CoDesign Instance in Figure 1). Be-
cause of their nature, decentralized systems cannot always
be perfectly synchronized, inducing the architects to make
such potentially erroneous decisions.

We categorize modeling-level conflicts into three classes
based on the rules that the system modeling events vio-
late: (1) synchronization, (2) syntactic, and (3) semantic
conflicts. Each category is briefly elaborated next.

Synchronization conflicts can be resolved with little or
no human intervention. For example, if an architect removes
a class from a system model and another architect decides to
add an attribute to the same class before the removal event
arrives, those two events would result in inconsistent states
in the two CoDesign instances. This type of conflict would
not happen if the two architects were in the same workspace,
since the removal event would be instantly “recorded” and
the class would no longer be there for the second architect to
modify. Although synchronization conflicts are the simplest
of the three conflict types, they are the most common and
thus must be detected and resolved efficiently and scalably.

Syntactic conflicts violate a modeling tool’s or language’s
meta-model constraints. Suppose, e.g., that an architect
connects an instance a1 of class A with an instance b1 of
class B and, before the connection addition event arrives, an-
other architect connects a1 and a new instance b2 of class B.
If the cardinality constraint of the meta-model allows class
A to have an association to only one instance of class B,
this becomes a conflict that would likely not have occurred
if the two architects were co-located. When the modeling
tool such as CoDesign receives the second event, the tool’s
meta-model constraint checker will detect an error. Alter-
natively, the tool could experience an unexpected crash if it
does not support syntactic conflict detection. Either way,
unlike the synchronization conflicts, the resolution of syn-
tactic conflicts will typically require human intervention.

Unlike the synchronization and syntactic conflicts, se-
mantic conflicts reflect violations in the intended, implicit
rules by which a system’s model should abide. For example,
a collaboratively completed design in a given architecture
description language (ADL) [16] may have no irreconcilable
events on the same model elements (i.e., no synchronization
conflicts) and no violations of the ADL’s grammar (i.e., no
syntactic conflicts). However, the model may be modified in
a way that violates, e.g., the rules of the underlying design
style. As a simple example, let us assume that the intended
style is client-server. An architect may model component C1
to make direct requests of component C2 in the system; the
implication of this is that C1 is a client and C2 is a server.
Another architect may, however, model component C2 to
make direct requests of component C1 ; the implication of
this interaction dependency is that C1 is, in fact, a server
and C2 a client. Hence, the same component is erroneosly
modeled both as a client and a server. Again, the language
in which the model is specified (e.g., UML) may not consider
this a conflict. In order to be properly checked for, this se-
mantic rule would have to be specified externally (e.g., in
the Object Constraint Language, or OCL). As with syntac-
tic conflicts, semantic conflicts such as the one illustrated

Architect-side

GME (Modeling Tool)

GME API (BON)

CoDesign GME Adapter

Event
Handler

Update
Handler

CoDesign/CoWare Connector

CoWare Client

Event Queue

Prism Connector

Login GUI

Architect

Server-side

CoWare Server

Prism Connector

Conflict Detector

User
Management

Drools
GME
Meta-
model

Checker

DB
Connector

User DB

Event
Storage

User
Information

User
Information

Events

New Events

User Information

Conflict-free
Events

Conflict
Notifications

New Events

Conflicts Conflicts

User
Information &
New Events

Conflict
Notifications &
Broadcasted
Conflict-free

Events

Conflict Detector Connector

User Information

New Events Conflict-free Events

New Events

New Events

Conflict-free Events

Conflict-free Events

New Events Conflicts

Figure 2: CoDesign’s Architecture. The double-lined polygons represent off-the-shelf software.

above can only be highlighted by a tool such as CoDesign,
but cannot be resolved without human intervention.

3. CODESIGN
In this section, we describe CoDesign’s architecture and

mechanism for enabling the integration of off-the-shelf (OTS)
conflict detection engines. As mentioned previously, CoDe-
sign aims to support integration of a variety of modeling lan-
guages and environments. Since modeling languages differ
in the way their syntax and semantics are defined, CoDe-
sign allows distributed architecture teams to use their own
specific conflict detection engines rather than attempting
to provide a general-purpose conflict detection engine. Sec-
tion 3.1 provides an example use case scenario of a collabora-
tive conflict that helps to describe CoDesign’s architecture.
Section 3.2 describes CoDesign’s conflict detection extension
points and the integration and customization of two OTS
components for conflict detection; other such components
(e.g., Jess) have been integrated in the same manner.

3.1 CoDesign’s Architecture
CoDesign uses a modeling tool-specific adapter (compris-

ing a CoDesign Instance in Figure 1) to capture design deci-
sions, in the form of model updates, from architecture mod-
eling tools. Each model update is subsequently encapsulated
within a CoWare design event and is transferred through
the CoWare infrastructure. A CoWare Client is installed at
each architect location to connect a CoDesign adapter to a
CoWare Server, which is running a Conflict Detector mod-
ule. The design events are forwarded from the CoDesign
adapter, through the CoWare Client and CoWare Server, to
the Conflict Detector. The Conflict Detector evaluates each
event to determine whether it conflicts with any previous
event(s) by requesting all plugged-in conflict detection en-
gines to analyze the event. The CoWare Server broadcasts
each event back to all CoWare Clients only if all plugged-in

conflict detection modules affirm that the design event does
not cause any conflict. However, if a conflict exists, CoWare
(1) tries to resolve it by itself and (2) alerts the architects
involved in the conflict using a notification message.

Figure 2 depicts our implementation. We use three off-
the-shelf software components: (1) GME [4], a software
modeling tool from Vanderbilt University, (2) Drools [8],
a rule-based business logic integration platform developed
by the JBoss community, and (3) Prism-MW [12], an event-
based middleware platform created at USC.

As noted above, the use of GME with CoDesign requires
a GME-CoDesign Adapter. The adapter captures design
decisions made by architects using GME via GME’s native
API, packages them within Prism-MW events, and transfers
them to the CoWare Client. The CoWare Client receives
the events and utilizes Prism-MW’s connector facilities to
send them to the Conflict Detector in the CoWare Server.
In this particular CoDesign configuration, we use Drools to
detect synchronization conflicts, GME’s native metamodel
checker to detect syntactic conflicts and GME’s OCL con-
straint checker to detect semantic conflicts.

As a simple scenario of conflict detection, suppose an ar-
chitect A1 deletes a design element e1 from her model in
GME. Once the Prism-MW event generated by this design
decision arrives at the Conflict Detector, each plugged-in
conflict detection engine will analyze it. The GME meta-
model checker and Drools respond that the event does not
cause a conflict. Both engines may also store the event tem-
porarily or permanently, depending on the circumstances.
The CoWare Server then broadcasts the event back to all
CoWare Clients except the original sender, A1.

Now suppose architect A2 changes the geometric location
of e1 before the remote deletion event is applied to her local
model data. The event is sent to the Conflict Detector via
the same route, and this time the Drools engine detects that
the model update applies to an object that no longer exists.

CoWare does not broadcast the location event, and since the
intentions of the two architects differ, CoWare notifies the
architects to ensure that they are aware of the situation.

3.2 Extending CoDesign
We illustrate CoDesign’s support for integrating and cus-

tomizing conflict detection engines using two example en-
gines: Drools and GME’s metamodel checker.

Detecting synchronization conflicts using Drools:
Drools is a production rule system that can be used to de-
tect complex events [11]. Drools evaluates whether a pro-
duction rule triggers based on the facts it receives and com-
putes. A production rule follows a simple pattern: when
<condition> then <action>. A complex event(e.g., a syn-
chronization conflict) is a pattern-based abstraction of other
events and can also be evaluated using production rule sys-
tems [10]. Whenever CoDesign’s Drools customization re-
ceives a CoDesign event to evaluate, it adds the event to its
working memory and evaluates all synchronization conflict
rules. Figure 3 shows a simplified example of a Drools rule
that detects when one CoDesign client changes a model el-
ement that had already been deleted by another CoDesign
client. CoDesign is able to detect modifications to the same
model elements because all distributed instances of a model
element have a single objectID in every CoDesign client.

Detecting syntactic and semantic conflicts using
GME: In the CoDesign configuration described thus far,
GME is used as the system modeling environment. Hence,
this CoDesign configuration’s syntactic and semantic con-
flict detection engines need to understand the syntax and
semantic constraints of GME models. To ensure that syn-
tactic and semantic conflicts are detected early, we reused
and integrated the relevant components of GME. GME’s
metamodel checker contains the logic that manages the data
model and checks whether executing a received CoDesign
event keeps the data model consistent with its meta-model.

Integrating conflict engines into CoDesign: To in-
tegrate an OTS conflict engine, we need to implement an
adapter connector to translate CoWare events into invoca-
tions of the conflict engine’s API and to tie the results re-
turned by the conflict engine back to the conflicting events
(see Figure 2). The Conflict Detector component checks
each event that the CoWare Server receives from the CoDe-
sign Clients. Since the Conflict Detector is unaware of the
syntax and the semantic constraints of the edited models, it
does not itself check whether an event causes a conflict but
forwards each event to the Conflict Detector Connector. The
Conflict Detector Connector distributes the event to each
integrated conflict detection engine, which in turn evaluate
the received event in parallel. The results are returned to
the connector and evaluated by the Conflict Detector, which
notifies the CoDesign Clients in the case of conflicts.

1 rule ”Object was ed i t ed a f t e r
2 i t had a l ready been removed ”
3 when
4 $e1 : Event (name == ”remove ”)
5 $e2 : Event ($e1 . objectID == objectID ,
6 timestamp > $e1 . timestamp)
7 then
8 out . send (new Conf l i c tEvent ($e1 , $e2) ;
9 end

Figure 3: Synchronization Conflict Detection Rule

4. CONCLUSION AND FUTURE WORK
Since we are a geographically distributed team, CoDesign

has presented a unique opportunity for “reflective” use in its
own design and implementation. In turn, this has allowed us
to test first-hand its scalability, efficiency, and extensibility.
Our work is on-going. We are investigating the root causes
of design-time conflicts, the relationships between conflict
types and modeling activities, as well as conflicts caused by
complex event sequences and/or large numbers of parallel
events. CoDesign opens up another research area — conflict
resolution. We have focused on conflict identification in our
work to date and have assumed that human designers will
use other means at their disposal to resolve the identified
conflicts. However, we hypothesize that CoDesign will lend
itself naturally to investigating automated conflict resolution
solutions, and that its extensible architecture will be able to
incorporate easily such solutions.

5. ACKNOWLEDGMENTS
This work has been supported by Infosys Technologies

Ltd. It has also been supported by the NSF award 0820170.

6. REFERENCES
[1] J. T. Biehl et al. Fastdash: a visual dashboard for

fostering awareness in software teams. In Proc. CHI
2007.

[2] M. Cataldo et al. Camel: A tool for collaborative
distributed software design. In Proc. ICGSE 2009.

[3] L.-T. Cheng et al. Jazzing up eclipse with
collaborative tools. In Proc. OOPSLA Workshop on
Eclipse Technology eXchange. ACM, 2003.

[4] GME. http://isis.vanderbilt.edu/projects/gme/.

[5] R. Hegde and P. Dewan. Connecting programming
environments to support ad-hoc collaboration. In
Proc. ASE 2008.

[6] J. Herbsleb. Global Software Engineering: The Future
of Socio-technical Coordination. In ICSE: 2007 Future
of Software Engineering. ACM, 2007.

[7] P. J. Hinds and D. E. Bailey. Out of sight, out of sync:
Understanding conflict in distributed teams.
Organization Science, 14(6):615–632, 2003.

[8] jBoss Drools. http://jboss.org/drools/.

[9] Jess. http://www.jessrules.com/.

[10] G. Li and H.-A. Jacobsen. Composite subscriptions in
content-based publish/subscribe systems. In Proc.
Middleware, 2005.

[11] D. Luckham. The power of events: an introduction to
complex event processing in distributed enterprise
systems. Springer, 2002.

[12] S. Malek et al. A style-aware architectural middleware
for resource-constrained, distributed systems. IEEE
TSE, pages 256–272, 2005.

[13] G. M. Olson and J. S. Olson. Distance matters.
Human-Computer Interaction, 15(2):139–178, 2000.

[14] A. Sarma et al. Towards supporting awareness of
indirect conflicts across software configuration
management workspaces. In Proc. ASE 2007. ACM.

[15] B. Sengupta et al. A research agenda for distributed
software development. In Proc. ICSE 2006.

[16] R. N. Taylor et al. Software Architecture: Foundations,
Theory, and Practice. John Wiley & Sons, 2009.

