
Enabling Workspace Awareness for
Collaborative Software Modeling

Jae young Bang, Daniel Popescu, Nenad Medvidovic
University of Southern California

Los Angeles, California, USA
{jaeyounb, dpopescu, neno}@usc.edu

ABSTRACT
Distributed software modeling is common today, although ge-
ographically separated designers need to overcome several
communication challenges. Software designers typically use
version control systems (VCSs) to integrate their work. How-
ever, existing VCSs do not continuously inform all designers
of new design decisions and conflicts. Designers often in-
troduce conflicts precisely because they are unaware of such
design decisions. Research on collaborative implementation
has explored workspace awareness to deal with this chal-
lenge, and observed that providing workspace awareness fa-
cilitates conflict detection and resolution. However, existing
workspace awareness tools typically do not work well as-is
for collaborative modeling. We envision the emergence of
new types of collaborative modeling tools that provide vari-
ous forms of workspace awareness.

INTRODUCTION
Today, economic advantages encourage the development
of software involving geographically-distributed stakehold-
ers [15]. For example, a client residing in Europe may work
with a software development company in America, which
outsources the work to Asia. Further, software development
teams themselves are increasingly geographically distributed.
Although distributed software development has its benefits,
communication challenges between geographically separated
team members typically dilute these benefits [9, 10, 12].

Software modeling is an important activity for designing and
documenting a software system [16]. To support coordina-
tion between distributed software designers, version control
systems (VCSs) for collaborative modeling have been devel-
oped and employed [1]. However, even state-of-the-art VCSs
introduce a delay between the times when local design deci-
sions are made and when developers incorporate others’ de-
cisions. Consequently, a designer is often unaware of design
decisions that made by others and introduces conflicts that
could be expensive to resolve.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSCW’12, February 11–15, 2012, Seattle, Washington, USA.
Copyright 2012 ACM 978-1-4503-1086-4/12/02...$10.00.

The negative consequences caused by the lack of such ”col-
laborative awareness” are not unique to collaborative soft-
ware modeling. In fact, they have been studied more
prominently in the case of collaborative software imple-
mentation. Workspace awareness is “the up-to-the-minute
knowledge of other participants’ interactions with the shared
workspace” [8]. Existing collaborative software implementa-
tion tools that enable workspace awareness are proactive; they
continuously provide information about the changes made to
the code base, in order to allow the distributed programmers
to detect and react to potential conflicts [3, 5, 6, 14, 17].
Empirical data has shown that enabling workspace awareness
helps conflict detection and resolution [13].

Unfortunately, existing workspace awareness tools typically
do not work well as-is for collaborative modeling. Many of
them do not understand the rich syntax and semantics of soft-
ware models. Software designers will need additional support
to achieve modeling-specific workspace awareness.

We posit that, since collaborative implementation benefits
from workspace awareness, so will collaborative modeling.
We envision two types of workspace awareness tools that
can aid collaborative modeling: (1) tools that support tradi-
tional copy-edit-merge to encourage parallel design activities
and also inform the designers of other designers’ activities
and newly occurring conflicts, and (2) tools that allow de-
signers to work together in a single synchronized workspace.
Another promising research direction is to apply speculative
analysis [4] to predict and prevent conflicts in advance. Over-
all, such collaborative tools would allow distributed design-
ers to coordinate more frequently (or continuously) in order
to avoid conflicts.

In this paper, we discuss (1) the limitations of existing collab-
orative modeling tools, (2) why existing techniques that focus
on collaborative implementation are insufficient, and (3) our
ideas for enabling software modeling workspace awareness.

DRAWBACKS OF CURRENT SOFTWARE MODEL VCS
Today, physically separated software designers typically use
VCSs to exchange their design decisions, to be aware of
each others’ intentions, and to avoid conflicts. However,
those tools do not update the designers continuously with the
changes made to the model. As a result, the designers may,
and do, subsequently make conflicting design decisions.

Altmanninger et al. surveyed and divided existing VCSs into
two sets based on how the VCSs share design artifacts: pes-

simistic and optimistic approaches [1]. A pessimistic ap-
proach uses locking to prevent multiple designers from mod-
ifying the same part of the system at once. The alternative to
this is the optimistic approach, in which each designer main-
tains her/his own local copy of the model, makes design deci-
sions in parallel, and merges them later. This approach is also
called copy-edit-merge.

The pessimistic approach has two principal drawbacks: sim-
ple locking techniques cannot prevent indirect conflicts that
involve dependencies between artifacts, and locking slows
down collaborative modeling activities. Simple locking tech-
niques that do not consider dependencies are unable to com-
pletely prevent conflicts. For example, one designer could
lock and modify a module that depends on a library. If an-
other designer locks and modifies that library at the same
time, these modifications may conflict. Moreover, even ad-
vanced locking techniques that do consider dependencies and
automatically preempt actions on all system parts that depend
on the part being edited are too restrictive to the designers be-
cause they prevent parallel work and slow down the design
process, which tends to be free-flowing.

The major drawback of the optimistic collaborative model-
ing approach is that the designers are not informed regularly
of the design decisions that other designers are making. The
existing tools that implement the optimistic approach merge
new design decisions either only when requested by the de-
signers or periodically. That results in longer time for a de-
sign decision to travel from the moment of its creation to the
perception at the other end. We call this time design decision
latency. High design decision latency often increases the fre-
quency of conflicting design decisions.

Furthermore, the designers are notified of newly occurring
conflicts only when a merge and retrieval of design decisions
or a specific query of new conflicts are requested. If the de-
signers do not know of existing conflicts, it is likely that they
will consequently make critical design decisions causing new
conflicts that are even more difficult to resolve. The cost to
detect and resolve such conflicts can be prohibitive, espe-
cially when they are left undetected for long periods. The
cost becomes even worse when the wrong design decisions
have been propagated into the implemented system.

APPLICATION OF WORKSPACE AWARENESS
The drawbacks of existing VCSs for modeling are, of course,
not unique to collaborative software modeling; collaborative
software implementation also shares similar challenges. To
cope with these challenges, previous research explored pro-
viding workspace awareness for collaborative software im-
plementation. This research has resulted in tools that provide
information about changes being made and potential conflicts
to all affected distributed developers [3, 5, 6, 14, 17]. These
tools have shown that achieving workspace awareness helps
developers to observe and resolve conflicts earlier.

However, existing collaborative implementation tools are not
intended and typically do not work well as-is for collaborative
modeling. Many collaborative implementation tools use line-
based merging to coordinate new changes [11]. Those tools

may allow merging that invalidates the model because they
neglect the syntax and semantics of the software model. The
tools that utilize more sophisticated merging may work for
collaborative modeling, yet it is still an open question how the
design-level models can be mapped into appropriate internal
representations that can be captured by these tools.

A modeling-specific workspace awareness tool will have to
resolve two types of conflicts: synchronization and higher-
order conflicts. Synchronization conflicts are conflicts that
prevent the local instances of a software model to be ag-
gregated into a single consistent model. They occur when
multiple designers modify the same software modeling ar-
tifact or closely related artifacts. Higher-order conflicts are
conflicts that violate the syntax of the modeling notation or
the intended semantics of the model. Higher-order conflicts
are harder to detect than synchronization conflicts as they of-
ten require computationally expensive model checking algo-
rithms.

The existing collaborative implementation tools may not sup-
port certain aspects of the software design process. In col-
laborative software modeling, software designers can make
modeling changes in parallel from many different views of
the model, resulting in higher-order conflicts that occur across
views. Also, software models that utilize customized meta-
models (e.g., domain-specific models) require tailored tools
for conflict detection and resolution. As a consequence,
reusing existing workspace awareness tools would require
higher-order conflict resolution support built on top of these
existing tools.

A LOOK TO THE FUTURE
Software modeling is typically a highly-collaborative activity
in which possible design solutions are explored in a team of
designers. The way distributed designers collaborate deter-
mines the type of necessary tool support. We envision two
types of collaborative modeling tools that enable workspace
awareness: (1) the traditional copy-edit-merge design pro-
cess, which facilitates exploring individually design solutions
and enables workspace awareness for distributed software
modeling teams, and (2) realtime synchronization, which en-
ables workspace awareness for teams that work simultane-
ously on the same model artifacts.

Workspace awareness can be provided to software design-
ers who do not have overlapping work hours. It is com-
mon that a software development team works round-the-clock
(or follow-the-sun) [15]. A software designer in such a
team is unaware of the design decisions that have been made
overnight while s/he is away. By providing an aggregated
rather than complete, raw list of design activities that have
been made by other designers while the designer is away, the
returning designer would be made aware of the current status
of the model. This should help to prevent making conflicting
design decisions when s/he resumes working.

Another way to provide workspace awareness is to implement
a single synchronized workspace through realtime synchro-
nization. The goal of realtime synchronization is enabling a
distributed collaborative modeling environment that has near-

zero decision latency as it would be the case for collocated
software designers. To realize such an environment, coordi-
nation techniques such as operational transformation [7] can
be used. Synchronization conflicts can be automatically re-
solved based on the operation types (creation, removal, or
modification of an artifact) or policies such as designers’
rankings. For example, a design decision made by a designer
could be automatically rejected if it conflicts with a decision
made by a higher-ranked designer. Such automatic synchro-
nization helps each designer to maintain an up-to-date copy
of the model.

An interesting opportunity is presented by speculative analy-
sis. Recent work [4] has demonstrated how speculative anal-
ysis can be used to predict proactively conflicts during col-
laborative implementation. Proactive collaborative model-
ing tools could provide even a higher degree of workspace
awareness by predicting potential conflicts before they are
made. For example, a proactive collaborative modeling tool
could monitor on which parts of the model each participating
designer is working and warn designers who are modifying
closely related artifacts about potential overlapping modifi-
cations before the decisions are made (e.g., via speculative
analysis).

We ultimately envision hybrid collaborative modeling en-
vironments that provide configurable degrees of workspace
awareness. In such hybrid collaborative modeling envi-
ronments, software designers are able to freely choose the
amount and type of information that they want to receive.

Overall, enabling workspace awareness will help geograph-
ically distributed software designers to coordinate with less
burden when dealing with conflicts.

ACKNOWLEDGEMENTS
This work has been supported by Infosys Technologies Ltd.

BIOGRAPHY

Jae young Bang
Jae young Bang is a second year PhD student at the University
of Southern California. His thesis topic is in collaborative
software modeling.

Daniel Popescu
Daniel Popescu received a PhD in computer science from the
University of Southern California. His research interests in-
clude software architecture, program comprehension and dis-
tributed event-based systems.

Nenad Medvidovic
Nenad Medvidovic is a professor in the Department of
Computer Science at the University of Southern California
and director of the USC Center for Systems and Software
Engineering. Medvidovic received a PhD in information and
computer science from the University of California, Irvine.

REFERENCES
1. Altmanninger, K., Seidl, M., and Wimmer, M. A Survey

on Model Versioning Approaches. IJWIS (2009).

2. Bang, J., Popescu, D., Edwards, G., Medvidovic, N.,
Kulkarni, N., Rama, G., and Padmanabhuni, S.
CoDesign – A Highly Extensible Collaborative Software
Modeling Framework. Proc. ICSE Tool Demo (2010).

3. Biehl, J. T., Czerwinski, M., Smith, G., and Robertson,
G. G. FASTDash: a visual dashboard for fostering
awareness in software teams. Proc. CHI (2007).

4. Brun, Y., Holmes, R., Ernst, M., and Notkin, D.
Speculative Analysis: Exploring Future Development
States of Software. FoSER (2010).

5. Brun, Y., Holmes, R., Ernst, M., and Notkin, D.
Proactive detection of collaboration conflicts. Proc.
ESEC/FSE (2011).

6. Dewan, P., and Hegde, R. Semi-Synchronous Conflict
Detection and Resolution in Asynchronous Software
Development. Proc. ECSCW (2007).

7. Ellis, C., and Gibbs, S. Concurrency control in
groupware systems. Proc. SIGMOD (1989).

8. Gutwin, C., and Greenberg, S. Workspace Awareness for
Groupware. Proc. CHI (1996).

9. Herbsleb, J. Global software engineering: The future of
socio-technical coordination. Proc. FoSE (2007).

10. Hinds, P., and Bailey, D. Out of sight, out of sync:
Understanding conflict in distributed teams.
Organization Science 14 (2003).

11. Mens, T. A State-of-the-art Survey on Software
Merging. TSE (2002).

12. Olson, G., and Olson, J. Distance matters.
Human-Computer Interaction 15 (2000).

13. Sarma, A., Redmiles, D., and van der Hoek, A.
Empirical Evidence of the Benefits of Workspace
Awareness in Software Configuration Management.
Proc. FSE (2008), 113–123.

14. Sarma, A., Redmiles, D., and van der Hoek, A. Palantı́r:
Early Detection of Development Conflicts Arising from
Parallel Code Changes. TSE (2011).

15. Sengupta, B., Chandra, S., and Sinha, V. A research
agenda for distributed software development. Proc.
ICSE (2006).

16. Taylor, R., Medvidovic, N., and Dashofy, E. Software
Architecture: Foundations, Theory, and Practice. John
Wiley & Sons, 2008.

17. Wloka, J., Ryder, B., Tip, F., and Ren, X. Safe-commit
Analysis to Facilitate Team Software Development.
Proc. ICSE (2009).

	Introduction
	Drawbacks of Current Software Model VCS
	Application of Workspace Awareness
	A look to the Future
	Acknowledgements
	Biography
	Jae young Bang
	Daniel Popescu
	Nenad Medvidovic

	REFERENCES

