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Abstract—Software architects who collaboratively evolve a
software model rely on version control systems (VCSs) to syn-
chronize their individual changes to the model. However, with
the current generation of software model VCSs, architects remain
unaware of newly arising conflicts until the next synchronization,
raising the risk that delayed conflict resolution will be much
harder. There are existing tools that proactively detect analogous
conflicts at the level of source code. However, it is challenging to
directly use them for software models because those tools are con-
structed to manage code-level rather than model-level changes.
Furthermore, no empirical data is currently available regarding
the impact of proactive conflict detection on collaborative design.
In this paper, we report on our design-level proactive conflict
detection research, which specifically targets a class of higher-
order conflicts that do not prevent merging but do violate a
system’s consistency rule. We present FLAME, an extensible,
operation-based collaborative software design framework that
proactively detects conflicts. We also present a user study result
involving FLAME conducted with 42 participants. The study
indicated that the participants who used FLAME were able to
create higher quality models in the same amount of time, and to
detect and resolve higher-order conflicts earlier and more quickly.

I. INTRODUCTION

Collaborative software design is challenging. Software
architects make design decisions, reify those decisions into
software models [1], and evolve the models as a team [2]. To
support this collaborative evolution of models, a number of
design environments have emerged. There are group editors
that provide a shared “whiteboard” [3]–[5] or synchronize
the models in realtime [6], but the major research effort has
been toward the asynchronous, copy-edit-merge style software
model version control systems (VCSs). Those VCSs provide
each architect her individual workspace by loosely synchro-
nizing the models in an on-demand fashion to parallelize the
architects’ work and maximize their productivity [7].

The loose synchronization of the software model VCSs,
however, exposes the architects to the risk of causing con-
flicts [6]. Today’s software model VCSs [7] detect conflicts
only when the architects synchronize their models. As a result,
the architects often make changes to the model without fully
understanding what issues may arise when they merge with
others’ changes. It is also possible that new changes made
after a conflict has been introduced need to be reversed in the
process of resolving the conflict, which results in wasted time
and effort [8].

What if those conflicts could be detected earlier in a proac-
tive fashion, that is, before an architect synchronizes her model
and finally becomes aware of them? Collaborative software
implementation faces a similar challenge of exposing software
developers to causing conflicts at the level of source code, and
the state-of-the-art techniques and tools are indeed capable of
proactively providing the code-level conflict information [9].
However, while the previous, code-level proactive conflict
detection research shed light on how to deal with the conflicts
in general, it is challenging to directly apply that to the
conflicts at the level of software models due to the following
two reasons. First, the existing proactive conflict detection
tools are not designed to manage changes made to graphical
software models and are often limited to specific development
environments into which they are integrated. Tools that are
designed to manage textual changes made to source code are
known not to work well with graphical software models [10]–
[14], and may not be configurable to deal with various kinds
of design conflicts that differ per design environment. Second,
to our best knowledge, no empirical study has been reported
to date on whether or to what extent proactive design conflict
detection may impact the cost of collaborative software design.

We present our research that attempts to alleviate the risk of
having software design conflicts by detecting them proactively.
In general, design conflicts can be categorized into two dif-
ferent types: synchronization and higher-order conflicts [14].
A synchronization conflict is a set of contradictory modeling
changes by multiple architects made to the same artifact or to
closely related artifacts, which means they cannot be merged
together. A higher-order conflict is a set of modeling changes
by multiple architects that can be merged but together violate
the system’s consistency rules (e.g., cardinality defined by the
metamodel). The two types differ in that they require different
sets of detection techniques. While both types pose similar
risks, in this paper, we focus on higher-order conflicts since
they are often more difficult to detect and resolve [14]–[16].

The focus of our research is not regarding how to detect the
higher-order design conflicts, which has already been widely
studied. We focus on the ways to proactively detect those
conflicts by exploiting the existing techniques, and further, on
the impact of doing so on collaborative design cost.

The contribution of this paper is two-fold:

1) We present the architecture and implementation of a col-
laborative software design environment, Framework for
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Logging and Analyzing Modeling Events (FLAME), which
proactively detects potential higher-order conflicts by run-
ning the conflict detection activities in the background.
FLAME is unique as it is the first reported proactive
conflict detection framework that is specifically designed
for collaborative software design. FLAME has two dis-
tinct characteristics: (1) it is extensible to allow architects
to plug-in the most appropriate conflict detection tools
for their modeling environment, and (2) it implements
operation-based model construction [12], [17] to be able
to perform conflict detection at the rate of each individual
modeling change if necessary.

2) We report the result of an exploratory user study we
conducted with 42 participants using FLAME to assess
whether or to what extent providing proactive conflict
detection impacts the cost of collaborative software design.
We found that the participants who were provided with
proactive conflict detection had more chances to commu-
nicate and were able to create higher quality models in the
same amount of time and to detect and resolve higher-order
conflicts earlier and more quickly.

The rest of the paper is organized as following: in Sec-
tion II, we introduce the problem by defining the types of
conflicts that could occur during collaborative software design.
We introduce our solution to the problem, FLAME, regarding
its architecture and implementation in Section III, and present
the user study we conducted using it in Section IV. In Sec-
tion V, we list and discuss the related work, and we conclude
the paper in Section VI.

II. PROBLEM

Collaborative software design suffers from several types
of conflicts. To clearly illustrate the problem and to drive
the discussion throughout this paper, we will use an example
system called Next-Generation Climate Architecture (NGCA,
depicted in Figure 1). NGCA is created based on the design
documents of NASA’s Computational Modeling Algorithms
and Cyberinfrastructure [18], an infrastructure that supports
computationally-heavy data comparisons between climate sim-
ulation model output and the actual climate data collected
via remote sensors. Because the climate simulation mod-
els and databases that compose NGCA belong to different
organizations scattered around the world, designing NGCA
naturally becomes collaborative involving software architects
from those organizations. Consider the following scenario with
two software architects Jane and John designing NGCA:

Jane and John are software architects who are involved
in the NGCA design project. They make design decisions
and document the decisions into a software model. The
modeling environment they use is semantically-rich and
domain-specific, and is capable of estimating three critical
runtime properties of NGCA: memory usage, message
latency, and energy consumption. The model is managed
by a current generation, copy-edit-merge style software
model VCS. One day, each of them makes changes to
their respective local copies of the model, runs estimations
locally, and moves to another design task after they do not
find any issue in the estimated property values. However, a
while later, when they try to synchronize their local copies

of the model by merging the changes, they realize one or
both of the following two situations:

1) Their changes were made to the same object and
were incompatible; Jane removed the object while John
updated an attribute of the same object. As a result, their
changes cannot be merged together.

2) They are able to merge their changes to other parts of
the model, but the model, with the changes from Jane
and John merged together, estimates that the memory
usage of the system at its runtime will surpass the
threshold defined by the NGCA requirement.

The above scenario depicts examples of (1) a synchroniza-
tion conflict and (2) a higher-order conflict respectively. We
define those conflicts [14] as following:

• A synchronization conflict is a set of design decisions
made by multiple architects that are not compatible and
cannot be merged together. It occurs when multiple soft-
ware architects make contradictory modeling changes on
the same software modeling artifact or closely related
artifacts. It is also called a context-free conflict [19]. It
is a similar concept of a textual conflict [15] or a direct
conflict [20]–[23] discussed in literature.

• A higher-order conflict is a set of design decisions made
by multiple architects that do not prevent synchronization
but together violate a consistency rule or a semantic rule
of the system. In other words, a higher-order conflict man-
ifests itself as an inconsistency in the merged model. It is
also called a context-sensitive conflict [19]. An analogous
concept at the source code level [15] is known as an
indirect conflict [20]–[23].

A software model cannot realistically evolve without hav-
ing inconsistencies [24], [25]. At the same time, having an in-
consistency caused by a higher-order conflict that is undetected
and unknown to the architects is a risk. For example, Jane and
John, when they found the higher-order conflict, would have
to revisit their previous changes in order to understand and
resolve the conflict, recalling the rationale and assumptions
they made along the way. Moreover, their work performed
after the conflict has been introduced may need to be reversed
during the process, which leads to wasted effort and increased
development cost.

To deal with the risk of having undetected higher-order
conflicts, one solution would be for the architects to synchro-
nize and detect the conflicts highly frequently, e.g., for every
change that they make. However, the cost of conflict detection
in that case is likely to overwhelm its benefits. In today’s
collaborative software design environments, that is a trade-
off decision that the architects have to make. The burden of
conflict detection grows further when the detection technique is
computationally expensive. While a few performance-oriented
model analysis techniques are lightweight [26], [27], many
other well-known techniques such as discrete-event simu-
lation [28], Markov-chain-based reliability analysis [29], or
queueing-network-based performance analysis [30] are often
computation-intensive and time-consuming, rendering highly
frequent conflict detection less affordable, especially as the
size of the system model grows.
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Fig. 1: A high-level model of Next-Generation Climate Architecture.

A number of tools for collaborative software implemen-
tation that proactively detect conflicts have emerged [9] to
minimize the analogous risk of having undetected conflicts
at the level of source code. Those tools perform trial merging
and conflict detection activities in the background to detect
conflicts early. We posit that a similar approach, when it is
applied to collaborative software design, will reduce the risk
that software architects face. However, challenges exist in
directly reusing the existing proactive conflict detection tools
for software design because these tools are constructed to
manage code-level rather than model-level changes and are
often integrated into a specific development environment.

An added challenge is that different software modeling
environments depend on their unique combinations of mod-
eling tool and consistency checkers, and any proactive conflict
detection solution should be able to cope with the differences.
For example, revisiting our scenario, the proactive conflict
detection tool for NGCA should be able to (1) orchestrate
the NGCA-specific modeling tool and consistency checkers
to automatically perform the higher-order conflict detection
activities in the background, (2) present conflict information
specific to the environment (e.g., violations of the three runtime
properties of NGCA), as well as (3) synchronize the graphical
modeling changes. Unfortunately, the existing proactive con-
flict detection tools do not fully satisfy the above requirements.

III. SOLUTION

A. Approach

To alleviate the risk of having undetected higher-order
design conflicts, we have developed an extensible, operation-
based collaborative software design framework, named Frame-
work for Logging and Analyzing Modeling Events (FLAME).
FLAME minimizes the duration of time during which the

conflicts are present but unknown to software architects by
proactively performing the conflict detection activity that in-
cludes a trial merging of modeling changes and execution
of consistency checking tools in the background. FLAME
subsequently presents the conflict information to the architects
in case the architects’ attention is required.

FLAME has two characteristics that distinguish it from
the existing proactive conflict detection tools. First, FLAME
is extensible. Software modeling environments differ in their
modeling tools, languages, and the suitable consistency check-
ers. FLAME utilizes an event-based architecture in which
highly-decoupled components exchange messages via implicit
invocation, allowing flexible system composition and adapta-
tion. FLAME exploits this event-based architecture to provide
explicit extension points for plugging a variety of off-the-shelf
tools, namely, modeling tools and conflict detection engines,
that are most appropriate for the given modeling environment.
Second, FLAME is operation-based. It synchronizes the mod-
els at the granularity of a single modeling operation such as
creation, update, or removal of a modeling element. Conflict
detection can become more fine-grained if the synchronization
is done for each modeling operation rather than at the level of
“diffs” between stored states of the model (e.g., saved files).
This fine-grained synchronization is advantageous because an
architect can find out which particular operation she performed
has caused a conflict [17]. On the other hand, as discussed
above, performing conflict detection for each operation could
be a significant, even unacceptable tax on the system’s per-
formance. FLAME deals with this explicitly, by employing
remote, cloud-based analysis nodes, as discussed below.

B. Architecture of FLAME

FLAME adds higher-order proactive conflict detection on
top of a conventional copy-edit-merge collaborative software
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design environment. Figure 2 depicts the high-level archi-
tecture of FLAME. On the architect-side, FLAME attaches
a modeling tool-specific adapter, FLAME Adapter, to the
modeling tool to capture each operation as it is made via
the modeling tool’s APIs. A FLAME Client is installed at
each architect’s location to establish a channel between the
architect-side and the server-side through which the captured
operations can be sent. For proactive conflict detection, each
captured operation is immediately forwarded from the FLAME
Adapter, through the FLAME Client, to the server-side.

The server-side Client Manager, which manages the con-
nections between the server-side and FLAME Clients, receives
the operation and forwards it to Detector Manager, which
subsequently replicates and broadcasts the operation to all
connected Detection Engines. A Detection Engine is similar to
a FLAME Client in the way that it is connected to an instance
of the modeling tool with a local copy of the model internally,
but a Detection Engine does not have an architect behind the
modeling tool initiating operations. Instead, it has an off-the-
shelf conflict detection tool plugged into the modeling tool. An
instantiation of FLAME may have more than one Detection
Engine, each of which has a different conflict detection tool
and may maintain a different version of the model.

When a Detection Engine receives an operation that has
been broadcast by the Detector Manager, the Detection Engine
applies the operation to its local model, automatically invokes
the conflict detection tool, and analyzes the outcome as an
architect would do. The result of the analysis is then delivered
back to the architects via FLAME in the reverse order to that
described above, i.e., from the Detection Engine, via the server-
side components Detector Manager and Client Manager, and
eventually to the architect-side FLAME Clients.

FLAME employs remote nodes to perform higher-order
conflict detection in order to offload the potentially resource-
intensive computations necessary for the detection from the
architect-side or the server-side machines. If a computation-
intensive type of conflict detection (recall Section II) were to
be performed on an architect’s machine or on the server for
every modeling operation, it could overwhelm the machine
and disturb the collaborative design activity. FLAME therefore
moves the burden to the Detection Engine.

FLAME can utilize more than one Detection Engine in
concert to parallelize the higher-order conflict detection. An
architect may need to perform multiple conflict detection ac-
tivities using several tools that implement different techniques
(e.g., a combination of static and dynamic analysis) or different
instances of the same technique (e.g., reliability and latency
analysis via discrete event-based simulation [31]). FLAME
distributes these conflict detection activities to multiple re-
mote nodes on a cloud. It instantiates multiple Detection
Engines, each of which is responsible for performing a single
higher-order conflict detection activity using the corresponding
conflict detection tool. This aspect of FLAME’s architecture
allows different Detection Engines to be instantiated as needed,
possibly even at runtime. We should also note that the network
delay that is introduced by distributing the conflict detection
activities to multiple nodes is negligible compared to the
amount of time necessary for actually performing the higher-
order conflict detection.

C. Implementation of FLAME

In order to evaluate whether or to what extent proactive
design conflict detection may impact the cost of collaborative
software design, we implemented FLAME based on the archi-
tecture introduced in Section III-B. Figure 3 depicts FLAME’s
detailed, as-implemented architecture. It integrates three off-
the-shelf software tools: (1) GME [32], a configurable software
modeling tool for domain-specific modeling, (2) XTEAM [31],
a model-driven design, analysis, and synthesis tool-chain, and
(3) Prism-MW [33], an event-based middleware platform.

FLAME connects those off-the-shelf tools together to pro-
vide proactive conflict detection to software architects. GME
allows architects to create a domain-specific modeling notation
(e.g., for NGCA) in which the architects can specify different
aspects of the target system. An architect modeling in FLAME
uses GME to specify the structure of the system by creating
a set of components, connectors, and the connections between
them. She then specifies, for each component and connector,
(1) how it stores data, (2) how it behaves and reacts to different
events, (3) on which physical host it is deployed, and (4) other
characteristics in the form of property lists. Each modeling
operation the architect makes along the way is captured by
the FLAME Adapter that immediately transfers the operation,
through the server-side FLAME components, to Detection En-
gines, via Prism-MW. Prism-MW establishes event-based in-
teraction channels for the transfer of the operations in FLAME.
When a Detection Engine receives an operation, it applies the
operation to its local model and invokes XTEAM to analyze
the model and estimate one or more runtime properties of the
modeled system such as memory usage (as in [31]), energy
consumption (as in [34]), and message latency (as in [35]). The
model analysis result produced by XTEAM is raw and needs to
be consolidated since it could distract the architects if provided
as-is. For example, the memory usage estimation outputs a
simple memory usage log for each component and connector of
the target system during the runtime simulation execution. The
Detection Engine responsible for the memory usage estimation
consolidates the result by computing the statistics necessary to
determine whether a consistency rule regarding the memory
usage has been violated, and forwards it to FLAME Clients,
where the result is processed further before being eventually
presented to architects, as described below.

FLAME provides an extension point at which a customized
GUI capable of presenting the domain-specific conflict infor-
mation can be plugged-in. In our current FLAME instance,
as a proof-of-concept, we implemented a small, always-on-top
GUI built to minimize the obtrusiveness while continuously
delivering conflict information to the architects. The GUI
uses color coding to indicate the presence of a higher-order
conflict. For example, recalling our NGCA scenario, the GUI
in Figure 4 changes the color of the “Memory” indicator from
green to red (darker highlighting in grayscale) if the estimation
surpasses the threshold.

IV. EVALUATION

We conducted a user study using FLAME, with the
primary goals (1) to assess how much earlier higher-order
design conflicts can be detected and resolved by implementing
proactive conflict detection as opposed to solutions that rely
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Fig. 2: High-level architecture of FLAME with two architects and two Detection

Engines. Gray polygons are design environment-specific components.

on the traditional on-demand merging of models, and (2) to
assess whether or to what extent proactive conflict detection
impacts the cost of collaborative software design. We had two
groups of participants each of which performed collaborative
design tasks with and without proactive conflict detection, and
compared the results. In this Section, we describe how we
setup this user study, present the results by answering three
questions, and discuss the threats to validity.

A. Study Setup

We based the user study on NGCA’s design documents
by recreating a collaborative software design scenario where
higher-order conflicts arise. Two groups of participants per-
formed design tasks with FLAME in its two modes: one that
does and another that does not present the proactive conflict
detection results to architects. By using FLAME for both
groups, we were able to track the participants’ collaborative
design activities at the level of each modeling operation and
were also able to track the higher-order conflicts from their
creation, to detection, and eventually to resolution for both
groups. To compare the cost of collaborative software design
with and without proactive conflict detection, in this study,
we estimated the cost by measuring (1) the extent of time the
architects spent performing collaborative design activities and
(2) the quality of the resulting model upon the completion of
the design task. Those two measurements were further divided
into granular dependent variables, shown in Table I, which will
be discussed in detail later in this section.

The participants in our study were 42 students enrolled in
the graduate-level Software Architecture class at the University
of Southern California. No participant had prior experience
with FLAME or the NGCA system. The participants spent

four weeks performing two software design assignments us-
ing the NGCA-specific modeling environment and FLAME’s
constituent XTEAM subsystem in order to get familiar with its
simulation-based analyses prior to the user study. This resulted
in comparable familiarity of each participant with the modeling
environment and the domain of the target system [36].

The participants were grouped into 21 teams of two. The
teams were then divided into two groups by their team numbers
(odd/even, randomly assigned): (1) the control group that used
FLAME in the mode that does not present the proactive
conflict detection results to simulate the behavior of a current
generation software model VCS (“w/o PCD” in Table I) and
(2) the experimental group that used FLAME in the mode that
does present the proactive conflict detection results (“w/ PCD”
in Table I). We also surveyed the participants’ industry expe-
rience to assess their prior exposure to collaborative software
design, but did not find that the prior industry experience of
the two groups differed significantly.

Each team participated in a 2-hour-long session during a
span of 18 days. The paper’s first author administered all 21
sessions. Each session was divided into three smaller sessions:
(1) the 1-hour-long FLAME tutorial, (2) the main, 30-minute-
long design session during which we recorded the participants’
design activities, and (3) the subsequent 30-minute-long design
session for the participants to experience the alternative mode
of FLAME. The rationale was for the participants to experience
both modes of FLAME, without and with proactive conflict
detection, and to collect their preferences of and assessment
of the differences they experienced between the two modes. We
did not record the design activity during the alternative-mode
session since the participants’ behavior in that session may
have been influenced by having undergone the main session.
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Sync. activities

Login information
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Fig. 3: Detailed architecture of FLAME. Double-lined polygons are

off-the-shelf, domain-specific software integrated into FLAME.

During the design sessions, each team was given a partially
complete NGCA model and assigned with software design
tasks to replace a set of components in the model, as well as
a set of three system requirements regarding the three NGCA
runtime system properties to satisfy. The two participants in
each team were directed to make trade-off design decisions to
two different non-overlapping parts of the model in order to
avoid synchronization conflicts. The given tasks were designed
in a way that the participants, in the course of decision making,
could violate two of the system requirements: energy con-
sumption and memory usage. The third requirement, message
latency, was not designed to be violated.

Also, we restricted the communication between the two
participants in each team to online communication media
during the sessions to reproduce the communication challenges
of geographically distributed collaborative software design. For
example, the two participants were not allowed to speak with
each other but had to initiate an email thread or use an instant
messenger in order to discuss their conflict resolution strategy.

B. Findings, Insights, and Implications

We present the analyses of the user study data by address-
ing three research questions derived from the two primary
goals of the study, defined at the beginning of this section.

Q1: Did FLAME affect the amount of time architects
spend in design activities? The top portion of Table I shows
the frequency of design activities (DV01-DV03) performed
during the main design sessions. During the same length of
time (CV1; 30 minutes), the frequency of design activities
differed significantly between the two groups of participants.
Specifically, the group with proactive conflict detection (1)
performed a higher number of modeling operations and (2)
communicated more frequently. The increase in the number of
operations can be explained by the increase in the confidence
of participants in making new changes. Fear of conflicts [15]
could make an architect take additional care when she makes
new operations. The following quote is from a participant,
which aligns with our reasoning: “our confidence that the
combined design would meet the requirements was much
higher when using proactive conflict detection.” Second,
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(a) An architect’s screen with the FLAME GUI.

(b) All property requirements are satisfied.

(c) The memory requirement is not satisfied.

Fig. 4: FLAME GUI for NGCA.

the increase in communication frequency aligns with a
previous empirical study in which a similar phenomenon
was observed for detection and resolution of higher-order
conflicts in collaborative software implementation [16].
One of the participants responded about how the increased
amount of communication has helped her team by saying: “I
prefer the proactive environment because my teammate and I
completed the task on time as we had enough communication.”

Q2: Did FLAME facilitate the way architects detect and
resolve the higher-order design conflicts? The middle
portion of Table I shows the number of conflicts that occurred
and how long they lasted during the collaborative design
sessions (DV04-DV07). We observed that, while the group
of participants with proactive conflict detection dealt with a
higher number of conflicts on average, no conflict was left
in the last commit nor at the end of session (DV05-DV06).
Furthermode, the average lifetime of the conflicts, from
when they are introduced to when they are resolved, was
significantly shorter (DV07). These results also corroborate
those reported in the previous research conducted at the code-
level [16], [21]. The following quotes from the participants
further explain our observation: “It was quicker and easier
to detect conflicts and fix them immediately.” and “[FLAME
was] making it easier to identify errors and fix them before
further changes are made.”

Q3: Did FLAME affect the quality of the resulting model?
The bottom portion of Table I shows the two factors (DV08-
DV09) we used to estimate the quality of the resulting model in
addition to the number of unresolved conflicts (DV05-DV06).
The participants were assigned with design tasks to modify the
system in a way that would maximize the throughput of the
system, which subsequently results in higher energy consump-
tion and memory usage. We tracked the variations of those two
factors from the beginning to the end of each collaborative
design session, and recorded the maximum values of the

factors that the team reached during the session. We observed
that the group of participants with proactive conflict detection
were able to design, on average, NGCA systems with higher
throughput while leaving fewer unresolved conflicts than the
group without proactive conflict detection, in the same amount
of time (CV01). The increased number of operations (as shown
in Q1) can be seen as evidence of the higher productivity of the
participants. The following is a quote from a participant that
can show the link between the number of operations and the
participants’ productivity: “[FLAME] increased productivity
as we were able to try more combinations [of modeling oper-
ations] in same amount of time.” The reduced effort in higher-
order conflict resolution (as shown in Q2) could also have
contributed in the higher productivity. The following quotes
from the participants corroborate this conclusion: “... proactive
conflict detection drastically minimizes the integration effort.”
and “[FLAME] shows my partner and me any conflicts that
we have without running the simulation as much as we did
with the one without proactive [conflict detection].”

C. Threats to Validity

As is commonly the case with controlled experiments, our
user study has threats to its validity due to its design. First,
our user study was conducted with students. While all students
were graduate-level, their design behavior may not be identical
to that of a real-world practitioner. Second, the design tasks
assigned to the participants were not from an actual project.
Instead, in order to recreate a realistic collaborative design
scenario, we based it on the NGCA design documents. Third,
the duration of observed design session per team was short (30
minutes), which could have caused bias from low familiarity
with the target system domain (NGCA) or the model analysis
framework (XTEAM). We minimized the bias by having the
participants perform multiple design assignments using the
NGCA model and XTEAM over the span of four weeks prior
to their sessions. We also believe the higher-order conflicts may
persist even longer in design sessions of longer duration, which
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TABLE I: User Study Results

Collaborative Design Activities w/o PCD w/ PCD

CV01: Duration (minutes) of modeling session per team 30.00 30.00

DV01: Number of modeling operations made per team 48.18 60.80

DV02: Number of communication activities per team 11.00 19.50

DV03: Number of synchronizations per team 6.18 8.00

Conflicts w/o PCD w/ PCD

DV04: Number of detected conflicts at synchronizations per team 1.27 2.40

DV05: Number of teams with unresolved conflicts at last commit 3 of 11 0 of 10

DV06: Number of teams with unresolved conflicts at session end 3 of 11 0 of 10

DV07: Lifetime (seconds) of a higher-order conflict 671.00 363.40

Resulting Model Quality; the higher is better w/o PCD w/ PCD

DV08: System throughput factor: energy consumption 8182862 8547929

DV09: System throughput factor: memory usage 729.09 747.60

CV is a control variable, and DV is a dependent variable. “w/o PCD” and “w/ PCD” stand for without and with proactive
conflict detection respectively. All values were rounded off at the third decimal.

would only increase the benefit of detecting them early. Last,
the team size was small (two per team). In a bigger team, it
may become ambiguous which architects are directly involved
in a higher-order design conflict. This is a hard problem in
general, and has not yet fully been answered.

Some aspects of the study execution were challenged by
threats to validity. First, we did not vary the amount of time it
takes a conflict detection tool to complete its model analysis,
while it may influence the architects’ reaction to proactive
conflict detection. In our user study, we kept the conflict
detection time relatively constant (38 seconds on average)
in order to avoid introducing bias. Second, only a single
kind of analysis tool (i.e., XTEAM) was used in the user
study. In a real-world setting, architects may work in a design
environment using several model analysis tools. We tried to
recreate a more realistic design environment by integrating
three XTEAM model analysis tools in FLAME. Third, we
have not conducted a full-fledged scalability evaluation of
FLAME. While migrating the conflict detection to Detection
Engines would prevent the architect-side or the server-side
machines from being resource-starved, there is another risk that
each Detection Engine may become a bottleneck in conflict
detection when more than two architects are simultaneously
performing modeling operations. We believe this could be
mitigated by involving additional, remote nodes dedicated to
perform conflict detection, further offloading the burden of the
detection from the Detection Engines to those nodes.

V. RELATED WORK

The risk of having conflicts from using a copy-edit-merge
style VCS is not unique to collaborative software design.
Collaborative software implementation faces an analogous
challenge at the level of source code. A number of techniques
and tools have been reported, including those for proactive
conflict detection [9].

Providing workspace awareness is an extensively studied
aspect of conflict avoidance and detection. Workspace aware-
ness is “the up-to-the-minute knowledge of other participants’
interactions with the shared workspace” [37]. FASTDash pre-
vents potential conflict situations (e.g. two developers editing
the same file) by providing a visual presentation of the
developers’ activities on shared files [38]. Some workspace
awareness tools analyze dependencies between program el-
ements (files, types, or methods), and notify developers of
conflicting changes made to elements depending on each
other [23]. Palantı́r shows who edited which shared artifacts,
in a less obtrusive way by integrating the presentation into the
development environment [20]. Syde [39] informs developers
of concurrent changes by maintaining an abstract syntax tree
of the target object-oriented system, interpreting code changes
into tree operations, and using them to filter conflict infor-
mation. Tools in this group primarily detect synchronization
conflicts and dependency-based higher-order conflicts.

Another group of proactive conflict detection tools per-
form deeper analyses such as compilation, unit testing, and
so on. Safe-commit [22] proactively identifies “committable”
changes that will not make test cases fail by running them
in the background. Two tools in this group, Crystal [40] and
WeCode [21], are closely related to FLAME. Both of them
proactively perform merging, compilation, and testing of new
changes developers make to source code in the background
and notify the developers if any of the steps fails.

FLAME differs from them in two ways: (1) exploiting
its event-based architecture, FLAME integrates off-the-shelf
higher-order conflict detection tools and offloads the poten-
tially resource-intensive conflict detection, and (2) it synchro-
nizes and is capable of performing conflict detection per mod-
eling operation, which enables earlier conflict detection and
pinpointing the specific operations that caused a conflict [17].
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VI. CONCLUSION

Higher-order software design conflicts are inevitable. The
asynchrony of today’s copy-edit-merge software model VCSs
exposes the architects to the risk of making modeling changes
without being aware of the presence of a higher-order conflict.
That may lead to the reversal of those changes in the process
of resolving the conflict, which results in wasted effort. In
this paper, we presented our solution, FLAME, an extensi-
ble, operation-based collaborative software design framework
that proactively detects higher-order software design conflicts.
FLAME minimizes the risk by performing a trial synchroniza-
tion and detection of higher-order conflicts for each modeling
operation in the background. The architecture of FLAME
is novel and specifically designed to support collaborative
software design. FLAME integrates the appropriate modeling
tool and consistency checkers for the domain of the target
system, and offloads the potentially computationally-expensive
conflict detection activities to a cloud, exploiting FLAME’s
event-based architecture. We also presented the result of a
user study we conducted with 42 participants using FLAME.
During the study, we observed that the participants who
were provided with proactive conflict detection (1) had more
opportunity to communicate with each other, (2) detected
and resolved higher-order design conflicts earlier and more
quickly, and (3) produced higher quality models in the same
amount of time. To our knowledge, this user study provides the
first reported empirical evidence that shows proactive conflict
detection positively impacts the cost of collaborative software
design. FLAME provides a foundation for exploring several
other issues with design-level conflict detection. These include
exploring different ways of delivering feedback to architects,
the effect of variations in the immediacy with which feedback
is delivered, prioritization of analyses and of the delivery of
analysis results, and exploration of the utility of proactively
analyzing software design models for properties of whose
importance the architects may be unaware.
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