
(19) United States
US 2012.0089960A1

(12) Patent Application Publication (10) Pub. No.: US 2012/0089960 A1
MEDVDOVIC et al. (43) Pub. Date: Apr. 12, 2012

(54) EXTENSIBLE COLLABORATIVE SOFTWARE
MODELING

(75) Inventors: Nenad MEDVIDOVIC, Manhattan
Beach, CA (US); Jae Young
BANG, Los Angeles, CA (US);
Daniel POPESCU, Pasadena, CA
(US); George EDWARDS, West
Hollywood, CA (US); Srinivas
PADMANABHUNI, Bangalore
(IN); Girish Maskeri RAMA,
Bangalore (IN); Naveen
KULKARNI, Bangalore (IN)

UNIVERSITY OF SOUTHERN
CALIFORNLA, Los Angeles, CA
(US)

(73) Assignee:

(21) Appl. No.: 13/271,008

S3888
:::::::::::: :::::::ii is

Coripi. C.
gif::::::::
88:8:
:::::::...is
3::::::

(22) Filed: Oct. 11, 2011
Related U.S. Application Data

(60) Provisional application No. 61/392,190, filed on Oct.
12, 2010.

Publication Classification

(51) Int. Cl.
G06F 9/44 (2006.01)

(52) U.S. Cl. ... 717/105: 717/104
(57) ABSTRACT

Multiple architects may concurrently create and modify a
model of computer Software, each on their own client at a
different location. Each change that is made to a model is
forwarded to a server for analysis. The server may determine
whether the change creates a conflict. If no conflict is
detected, the change may be approved, saved, and propagated
by the server to all of the other clients that are working on the
same model. If a conflict is detected, on the other hand, the
change may not be approved by the server. The server may
instead provide notice of the conflict.

&:::::::::
:::::::::::s

iix i:

Patent Application Publication Apr. 12, 2012 Sheet 1 of 9 US 2012/0089960 A1

388:::::::::
88.8::::::::

;i&;

S£38,888
:::::38.8

:::::::

S388.88:
;3888

iii.

8388.8::
::::::::::::
3:::::::::::
8:3:38.88
388-88

FIG. 1

8x8 ii. 8:8:38; 3:3:8:8883:8:...is: 8:888
2:38 w 283 wo 33.

c. Enr soprware
{{884.8:08.108 8088.

808 i.8 3A A8488

FIG. 2

Patent Application Publication Apr. 12, 2012 Sheet 2 of 9 US 2012/0089960 A1

S: 3:388: 8::::::::883 ::::::::

&{{{Eii-8 880;3:.8 ::::::::::::::::
3:33 &83;xiii:

:::::::::.
88::iii.8 JSER inneRace

38:8
:::::::::::8 ::::::::::::::::::

88:8:8

FIG. 3

Fig. 14

Patent Application Publication Apr. 12, 2012 Sheet 3 of 9 US 2012/0089960 A1

s

8
s

s

3.

X

& 3: 33 s ::

s
r

&
a
V

s
x

s

s
ra • 8.

: 8

Patent Application Publication Apr. 12, 2012 Sheet 4 of 9 US 2012/0089960 A1

FIG. 6

Fig. 7A

Fig. 7B

Patent Application Publication Apr. 12, 2012 Sheet 5 of 9 US 2012/0089960 A1

Fig. 8A

Fig. 8B

Patent Application Publication Apr. 12, 2012 Sheet 6 of 9 US 2012/0089960 A1

Fig. 10B

Patent Application Publication Apr. 12, 2012 Sheet 7 of 9 US 2012/0089960 A1

Patent Application Publication Apr. 12, 2012 Sheet 8 of 9 US 2012/0089960 A1

Patent Application Publication Apr. 12, 2012 Sheet 9 of 9 US 2012/0089960 A1

US 2012/0089960 A1

EXTENSIBLE COLLABORATIVE SOFTWARE
MODELING

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application is based upon and claims priority to
U.S. provisional patent application 61/392,190, entitled
“CODESIGN: A HIGHLY EXTENSIBLE COLLABORATIVE SOFT.
WARE MODELING FRAMEWORK filed Oct. 12, 2010, attorney
docket number 028080-0611. The entire content of this appli
cation is incorporated herein by reference.

BACKGROUND

0002 1. Technical Field
0003. This disclosure relates to software modeling and, in
particular, to Software models that are concurrently designed
and edited by different persons at different locations.
0004 2. Description of Related Art
0005. In recent years, many technology companies have
transferred significant portions of their software development
activities to emerging economies, such as India and China. At
the same time, many stakeholders, such as customers and
requirements engineers, remain in developed countries. As a
result, companies have created global Software development
teams in which engineers are separated by large geographic
distances.
0006 While the economic advantages of distributed soft
ware development are real, communication challenges may
impede the full realization of these advantages. Geographic
separation may drastically reduce communication among
coworkers. Irregular and ineffective communication may pre
vent shared understanding of problems and solutions, and can
lead to redundant efforts during software development.
0007 Global software teams have relied on traditional
integrated development environments (IDEs) that were
developed for co-located development teams, along with Soft
ware configuration management (SCM) systems. SCM tools,
such as CVS and Subversion, allow engineers to work on
Software artifacts independently and with reduced planning
and coordination because they automatically merge modifi
cations and detect conflicting changes. However, concurrent
SCM systems may not detect conflicts until the engineers
“check in the changes, by which point there may have been
efforts that were unnecessary or useless. Furthermore, con
flicts may be more difficult and time-consuming to resolve at
this late stage.
0008 To detect conflicts and avoid costly conflict resolu

tion, collaborative IDEs have become a popular way to pro
vide engineers with awareness of the concurrent development
activities of coworkers. Most collaborative IDEs detect con
flicting, concurrent modifications to the same artifact—such
as the same file-and provide real-time notifications of these
obvious, direct conflicts. A more limited number of collabo
rative IDEs also detect indirect conflicts that may require
more rigorous analysis. For example, if one engineer changes
the implementation of a component while another engineer
concurrently modifies the component's interface, an indirect
conflict could result.
0009 Current collaborative IDEs focus on distributed pro
gramming. Other critical development tasks, particularly
architecture design and modeling, are not readily supported,
even though these activities require frequent interactions
among team members and short feedback cycles. As a result,

Apr. 12, 2012

geographically-distributed Software architects may still cre
ate and edit their models in traditional modeling environ
ments and check-in their changes to a repository using an
SCM system. This may result in all the same problems noted
above that collaborative IDEs helped to solve.

SUMMARY

0010 Multiple architects may concurrently create and
modify a model of computer Software, each on their own
client at a different location. Each change that is made to a
model may be concurrently detected and forwarded to a
server for analysis. The server may determine whether the
change creates a conflict. If no conflict is detected, the change
may be approved, saved, and propagated by the server to all
others clients that are also working on the same model. If a
conflict is detected, on the other hand, the change may not be
approved by the server. The server may instead provide notice
of the conflict.
0011. These, as well as other components, steps, features,
objects, benefits, and advantages, will now become clear from
a review of the following detailed description of illustrative
embodiments, the accompanying drawings, and the claims.

BRIEF DESCRIPTION OF DRAWINGS

0012. The drawings are of illustrative embodiments. They
do not illustrate all embodiments. Other embodiments may be
used in addition or instead. Details that may be apparent or
unnecessary may be omitted to save space or for more effec
tive illustration. Some embodiments may be practiced with
additional components or steps and/or without all of the com
ponents or steps that are illustrated. When the same numeral
appears in different drawings, it refers to the same or like
components or steps.
0013 FIG. 1 illustrates multiple software modeling clients
and an associated conflict detection Software modeling
SeVe.

0014 FIG. 2 illustrates an example of the conflict detec
tion software modeling server illustrated in FIG. 1.
0015 FIG. 3 illustrates an example of one of the software
modeling clients illustrated in FIG. 1.
0016 FIG. 4 illustrates another example of the conflict
detection software modeling server and one of the software
modeling clients illustrated in FIG. 1.
(0017 FIG. 5 illustrates an example of a conflict rule that
may be programmed in the server illustrated in FIG. 4.
0018 FIG. 6 illustrates an example of a screen that may be
generated during the initialization of the conflict detection
software modeling server illustrated in FIG. 4.
(0019 FIGS. 7A and 7B illustrates examples of client log
in screens that may be generated during the login of a first and
a different second client of the type illustrated in FIG. 4.
respectively.
(0020 FIGS. 8A and 8B illustrate examples of screens that
may be generated after the logins illustrated in FIG. 7 on the
respective clients.
0021 FIG. 9 illustrates an example of a screen that may be
displayed by the conflict detection software modeling server
illustrated in FIG. 4 after the logins illustrated in FIGS. 7A
and 7B.
0022 FIG. 10A illustrates an example of a screen on the

first client, displaying a model of software after it is received
from the server illustrated in FIG. 4, including a design ele
ment within this model. FIG. 10B illustrates an example of a

US 2012/0089960 A1

screen on the second client, displaying the same model of
software after it is received from the server illustrated in FIG.
4, including the design element within this model.
0023 FIG. 11A illustrates the screen on the first client,
after an architect on the first client has moved the position of
the design element. FIG. 11B illustrates the screen on the
second client after the movement of the design element that
was made by the architect of the first client has been deter
mined by the conflict detection software modeling server
illustrated in FIG. 4 not to create a conflict.
0024 FIG. 12A illustrates the screen on the first client
after an architect has removed the design element. FIG. 12B
illustrates the screen on the second client, before the deletion
of the design element that was removed by the architect on the
first client has been determined not to create a conflict by the
server illustrated in FIG. 4.

0025 FIG. 13A illustrates a conflict notification on the
screen of the first client after the architect on the second client
moved the removed design element. FIG. 13B illustrates a
conflict notification on the screen on the second client after
the architect on the second client moved the removed design
element.

0026 FIG. 14 illustrates a report that the server that is
illustrated in FIG.4 may display after detection of the conflict
illustrated in FIGS. 13A and 13B.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

0027 Illustrative embodiments are now described. Other
embodiments may be used in addition or instead. Details that
may be apparentorunnecessary may be omitted to save space
or for a more effective presentation. Some embodiments may
be practiced with additional components or steps and/or with
out all of the components or steps that are described.
0028 FIG. 1 illustrates multiple software modeling clients
101, 103, and 105 and an associated conflict detection soft
ware modeling server 107. As illustrated in FIG. 1, the mul
tiple software modeling clients 101, 103, and 105 may each
communicate with the conflict detection Software modeling
server 107. The software modeling clients 101, 103, and 105
may communicate with the conflict detection Software mod
eling server 107 over a computer network, such as over the
Internet, a local area network, a wide area network, or a
combination of these. Although only three clients are illus
trated in FIG. 1, there may be a different number, such as a
Smaller or larger number.
0029. Each software modeling client 101 may design and
edit the same model of software under the instructions of a
Software designarchitect. Each Software modeling client may
also allow an architect to work on other software models,
either alone or concurrently with architects working on one or
more of the other clients.
0030 The model of software is an artifact that captures
Some or all of the design decisions that comprise a software
system's architecture or design.
0031. Each change to a model that is made by an architect
may be communicated to the conflict detection Software mod
eling server 107. In turn, the conflict detection software mod
eling server 107 may determine whether the change creates a
conflict. If not, the conflict detection software modeling
server 107 may save the approved change and notify the
clients that did not make the change of the approved change,
so that they may update their copy of the model accordingly.

Apr. 12, 2012

0032. If a conflict is detected, on the other hand, the con
flict detection software modeling server 107 may communi
cate information about this conflict to the client that made the
change, as well as possibly to one or more of the other clients,
such as the other client or clients that are involved with the
conflict. The client that made the change may then remove the
change. The architects that are involved with the conflict may
then communicate with one another to resolve the conflict.
0033. In an alternate configuration, the client that makes
the change may be configured to defer implementation of the
change until after receiving notice from the conflict detection
software modeling server 107 that the change does not create
a conflict. In this configuration, the conflict detection soft
ware modeling server 107 may be configured to notify the
client that made the change that it does not conflict, as well as
to save the change and notify the other clients of the approved
change.
0034 FIG. 2 illustrates an example of the conflict detec
tion software modeling server 107 illustrated in FIG. 1. As
illustrated in FIG. 2, the conflict detection software modeling
server 107 may include a conflict detection module 201, an
architect database 203, a conflict resolution module 205, a
client communication module 207, and a software model
database 209. The conflict detection software modeling
server 107 may include additional components or not all of
the components that have been described.
0035. The client communication module 207 may be con
figured to communicate with the clients 101, 103, and 105
over a computer network, such as over the Internet, a local
area network, a wide area network, or a combination of these.
The communications may include receiving information
about changes to a model of computer software. Information
about each change may come from one of multiple Software
modeling clients that are designing the model. Such as the
software modeling clients 101, 103, or 105. The client com
munication module 207 may include a network interface card
and related hardware and software.
0036. The conflict detection module 201 may be config
ured to determine whether each requested change that is
received by the client communication module 207 would
cause a conflict. This determination may be based on a set of
programmable rules. The conflict detection module 201 may
be configured to determine that a change would cause a con
flict, for example, when the change would cause a synchro
nization conflict, a syntactic conflict, and/or a semantic con
flict. Descriptions of each of these types of conflict is
provided below.
0037. The conflict detection module 201 may include mul
tiple conflict detection sub-modules. Each sub-module may
be configured to determine whether a requested change
would cause a conflict of a particular type. The conflict detec
tion module 201 may be configured to aggregate the results
from the conflict detection sub-modules.
0038. The conflict detection module 201 may be config
ured to cause the client communication module 207 to
respond to the information about each change that it receives.
0039. When the conflict detection module 201 determines
that a change would not cause a conflict, the conflict detection
module 201 may be configured to cause the client communi
cation module 207 to communicate information about the
change to the Software modeling clients that did not send the
information about the change to the conflict detection soft
ware modeling server. The information to the other clients
may include a description of the change, the architect who

US 2012/0089960 A1

created the change, and the state of the system model present
at the location of the architect who created the change at the
moment the change was created. The conflict detection mod
ule 201 may be configured to cause the client communication
module 207 to also communicate information about the
change to the Software modeling client that did send the
information about the change. The conflict detection module
201 may also be configured to cause information about the
approved change to be stored in the Software model database
209.
0040. When the change would cause a conflict, on the
other hand, the conflict detection module 201 may be config
ured to cause the client communication module 207 to com
municate to the software modeling client that sent the infor
mation about the change that the change causes a conflict. The
communication may include information identifying the
architects involved with the conflict, the elements of the
model that are involved with the conflict, and the actions that
caused the conflict. This communication may also be sent to
other clients, such as the other client or clients that are
involved with the conflict.
0041. The architect database 203 may be configured to
store information identifying architects and/or clients that
have registered with the conflict detection software modeling
server 107 to modify one or more models. The architect
database 203 may include information identifying each reg
istered architect and/or client and each model for which the
architect and/or client has been registered.
0042. The conflict resolution module 205 may be config
ured to automatically resolve some or all conflicts in accor
dance with rules that may be programmable. For example, the
conflict resolution module 205 may be configured to resolve
a synchronization conflict by giving preference to the con
flicting feature that was first entered or that was entered by the
senior architect. If the conflict resolution module 205 is able
to resolve a conflict, the conflict resolution module 205 may
be configured to cause the client communication module 207
to communicate information about the resolved and now
approved change to the Software modeling clients that did not
send the information about the change, as well as to the client
that did send the information.
0043. The software model data base 209 may be config
ured to store a copy of the current state of each model, with all
approved changes, and to download this to any client that
requests it. It may also be configured to store a transaction
history of the changes to each model.
0044 FIG. 3 illustrates an example of the software mod
eling client 101 illustrated in FIG.1. As illustrated in FIG. 3,
the software modeling client 101 may include a modeling
module 301 containing a user interface 303, an event detec
tion module 305, an event queue 309, an event filter module
307, and a server communication module 311 The software
modeling client 101 may contain additional modules or not
all of these modules.
0045. The modeling module 301 may be configured to
enable an architect to design and edit a model of computer
software. Examples of the modeling module 301 are provided
below.
0046. The user interface 303 may be configured to allow
the architect to view the model, to request changes to the
model, and to view the model with changes made to it. The
user interface 303 may include any type of user interface
device. Such as a display, touch screen, keyboard, pointing
device, microphone, and/or sound transducer.

Apr. 12, 2012

0047. The event detection module 305 may be configured
to detect each change to the model that the architect requests
through the use of the user interface 303 in the modeling
module 301. To facilitate this, the modeling module 301 may
include one or more APIs that are invoked by the modeling
module 301 each time an architect requests a change to the
model. These APIs may be configured to pass information
about the change request, Such as an identifier of the target
modeling element that is being modified, the type of action
that is made, the previous value of the element, the new value
of the element, and information about the parent of the target
element.
0048. The event detection module 305 may include an
event filter module 307. The event filter module 307 may be
configured to filter events that are detected by the event detec
tion module 305 so as to eliminate one or more types of events
according to filter criteria from those about which informa
tion is communicated to the remote conflict detection soft
ware modeling server 107. The filter criteria may be config
ured to be user-programmable.
0049. Events that are detected by the event detection mod
ule 305 and filtered by the event filter module 307 may be
passed to the event queue 309 for temporary storage. The
event queue 309 may be configured to temporarily store infor
mation about each change until information about the change
is communicated to the conflict detection Software modeling
server 107. This may prevent disruption of the conflict veri
fication process that might otherwise becaused by a tempo
rary lapse in the communication between the software mod
eling client 101 and the conflict detection software modeling
server 107 and/or by a temporary failure of the conflict detec
tion software modeling server 107.
0050. The server communication module 311 may be con
figured to communicate with the clients 101, 103, and 105
over a computer network, Such as over the Internet, a local
area network, a wide area network, or a combination of these.
The server communication module 311 may include a net
work interface card and related hardware and software.
0051. The event detection module 305 may be configured
to cause the server communication module 311 to communi
cate information about each change to the remote conflict
detection software modeling server 107. The information
may include information identifying the model, the change to
the model, the person making the change, and the time of the
change.
0.052 The server communication module 311 may be con
figured to receive different types of notifications from the
conflict detection software modeling server 107.
0053) One type of notification that the server communica
tion module 311 may be configured to receive may indicate
that the previously-communicated change caused a conflict.
The notification may include information identifying the
architects that are involved with the conflict, elements in the
model that would conflict, and the actions that cause the
conflict. When this type of notification is received, the mod
eling module 301 may be configured to remove the change
from the model. The architect may then attempt to manually
resolve the conflict, which may include communicating with
one or more other architects that may be involved with the
conflict.

0054 Another type of notification that the server commu
nication module 311 may be configured to receive may indi
cate that another client has made an approved change to a
model. The notification may include information identifying

US 2012/0089960 A1

the model, the change, the architect that made the change, and
the time of the change. The modeling module 301 may be
configured to cause the change that is the Subject of each Such
notification to be made. Again, this may be facilitated by an
appropriate API in the modeling module 301.
0055 FIG. 4 illustrates another example of one of the
software modeling clients and the conflict detection software
modeling server illustrated in FIG. 1.
0056. The software modeling client illustrated in FIG. 4
may be configured to perform the functions of the client 101
and may include a GME modeling tool 401, an event handler
403, an update handler 405, an event/update connector 407,
an event queue 409, a Prism connector 411, and a login GUI
413.
0057 The GME modeling tool 401 and the update handler
405 may be configured to perform the functions of the mod
eling module 301; the event handler 403 may be configured to
perform the functions of the event detection module 305 and
the event filter module 307; and the event queue 409 may be
configured to perform the functions of the event queue 309.
The client components illustrated in FIG. 4 may also be
configured to perform additional and/or different functions,
as described below.
0058 Correspondingly, the server illustrated in FIG. 4
may be configured to perform the function of the server 107
and may include an architect database 417, a Drools conflict
engine 419, a GME meta-model checker 421, a database
connector 423, an architect management module 425, a con
flict detector connector 427, a conflict detector 420, a Prism
connector 431, and event storage 433. The Drools conflict
engine 419, the GME meta-model checker 421, and the con
flict detector 420 may be configured to collectively perform
the functions of the conflict detection module 201; the archi
tect database 417 may be configured to perform the functions
of the architect database 203; and the event storage 433 may
be configured to perform the functions of the software model
database 209. Each of the components illustrated in the server
in FIG.4 may be configured to perform additional or different
functions, as described below.
0059. The event queue 409, the Prism connector 411, the
login GUI 413, the architect management module 425, the
conflict detector connector 427, the conflict detector 420, the
Prism connector 431, and the event storage 433 may be con
figured to interact via lightweight middleware.
0060. The design illustrated in FIG. 4 may implement an
event-based architecture in which highly-decoupled compo
nents may exchange messages via implicit invocation, allow
ing flexible system composition and adaptation. This event
based architecture may be coupled with an API that provides
explicit extension points for plugging in conflict detection
engines, such as the Drools conflict engine 419 and the GME
meta-model checker 421. This may allow different clients
(e.g., a UML modeling tool or a finite state machine modeling
tool) to be paired with the most appropriate consistency
checkers. It also may allow multiple consistency checkers to
be used in concert and for their conflict check results to be
aggregated, in order to handle different types of modeling
inconsistencies.
0061 Off-the-shelf conflict detection engines may be
used, such as the Drools conflict engine 419 (from the JBoss
community), the GME meta-model checker 421, and/or a
Jess conflict detection engine from IBM.
0062. The types of conflicts that can occur during collabo
rative distributed architectural modeling may be classified in

Apr. 12, 2012

different ways. One such classification approach is described
below. The architecture and implementation of the design
illustrated in FIG. 4 is also described below in more detail,
with a focus on an extensibility mechanism.

Design-Time Conflicts
0063. When designing distributed collaborative systems,

it may be helpful to understand the potential issues and con
flicts caused by modeling events that are generated simulta
neously in remote locations. Two categories of issues that
may occur in collaborative Software modeling over the net
work are: parallel modification and modeling conflicts.
0064 Parallel modification may occur when multiple
architects modify the same modeling object or multiple
objects that are very close in a model, e.g., an object and its
parent. Parallel modification need not manifest itself as a
conflict. However, detecting it and notifying the architects
may be crucial as a warning to exercise caution and avoid
future conflicts. For example, even though two simultaneous
modifications to an object and its parent may be consistent
with one another, each of the architects making one of those
modifications may be unaware of the other architect’s actions
and may be more likely to make Subsequent changes that will,
in fact, result in a conflict. The conflict detection module 201
may be configured to detect changes from architects regard
ing closely related Software elements and issue notifications
of these changes to the architects. Such notifications may
include the information regarding the system model elements
that are modified by the change as well as their parent ele
mentS.

0065. A conflict may include an issue that is engendered
by Synchronization latency, that is, when one architect makes
a design decision that cannot be reconciled with another,
previously made design decision, but that has not yet been
synchronized with the architect’s local instance of the model.
Because of their nature, decentralized systems may not
always be perfectly synchronized, inducing the architects to
make potentially erroneous decisions.
0.066 Modeling conflicts may be classified into three
types based on rules that System modeling events violate: (1)
synchronization, (2) syntactic, and (3) semantic conflicts.
0067 Synchronization conflicts can be resolved with little
or no human intervention. For example, if an architect
removes a class from a system model and another architect
decides to add an attribute to the same class before the
removal event arrives, those two events would result in incon
sistent states between the two instances. This type of conflict
might not happen if the two architects were in the same
workspace, since the removal event might be instantly
“recorded and the class would no longer be there for the
second architect to modify. Synchronization conflicts may be
the simplest of the three conflict types and can be detected and
resolved efficiently and scalably.
0068 Syntactic conflicts violate a modeling tool's or lan
guage's meta-model constraints. Suppose, e.g., that an archi
tect connects an instance a1 of class A with an instance b1 of
class B and, before the connection addition event arrives,
another architect connects a1 and a new instance b2 of class
B. If the cardinality constraint of the meta-model allows class
A to have an association to only one instance of class B, this
becomes a conflict that would likely not have occurred if the
two architects were co-located. When the modeling tool illus
trated in FIG. 4 receives the second event, the tool's meta
model constraint checker will detect an error. Alternatively,

US 2012/0089960 A1

the tool could experience an unexpected crash if it does not
Support syntactic conflict detection. Either way, unlike the
synchronization conflicts, the resolution of syntactic conflicts
may require human intervention.
0069. Unlike the synchronization and syntactic conflicts,
semantic conflicts reflect violations in the intended, implicit
rules by which a system's model should abide. For example,
a collaboratively completed design in a given architecture
description language (ADL) may have no irreconcilable
events on the same model elements (i.e., no synchronization
conflicts) and no violations of the ADL’s grammar (i.e., no
syntactic conflicts). However, the model may be modified in
a way, for example, that violates rules of the underlying
design style. As a simple example, assume that the intended
style is client-server. An architect may model component C1
to make direct requests of component C2 in the system; the
implication of this is that C1 is a client and C2 is a server.
Another architect may, however, model component C2 to
make direct requests of component C1; the implication of this
interaction dependency is that C1 is, in fact, a server and C2
a client. Hence, the same component is erroneously modeled
both as a client and a server. Again, the language in which the
model is specified (e.g., UML) may not consider this a con
flict. In order to be properly checked, this semantic rule may
have to be specified externally (e.g., in the Object Constraint
Language, or OCL). As with Syntactic conflicts, semantic
conflicts such as the one illustrated above may be highlighted
by a tool such as illustrated in FIG.4, but may not be resolved
without human intervention.

Architecture and Integration

0070. As illustrated in FIG. 4, the system may have an
architecture and mechanism for enabling its integration with
off-the-shelf (OTS) conflict detection modules. The design
may support integration with a variety of modeling languages
and environments. Since modeling languages differ in the
way their syntax and semantics are defined, the design may
allow distributed architecture teams to use their own specific
conflict detection engines, rather than attempting to provide a
general-purpose conflict detection engine. An example use
case scenario of a collaborative conflict that helps to illustrate
this architecture is described below. Conflict detection exten
sion points and integration and customization of two OTS
components for conflict detection are also described below.
Other such components, such as Jess, may be integrated in the
Saale.

Architecture

0071. The design may use a modeling tool-specific
adapter to capture design decisions, in the form of model
updates, from architecture modeling tools. Each model
update may be subsequently encapsulated within a design
event and may be transferred through the middleware infra
structure. A client may be installed at each architect location
to communicate with the server, which may be running the
conflict detector 420. The design events may be forwarded
from the event handler 403 and the event/update connector
407 through the event queue 409, and Prism connector 411 to
the server and then to the conflict detector 420.

0072 The conflict detector 420 may be configured to
evaluate each event to determine whether it conflicts with any
previous event(s) by requesting all plugged-in conflict detec
tion engines to analyze the event. The server may broadcast

Apr. 12, 2012

each event back to all of the clients if and only if all plugged
in conflict detection modules affirm that the design event does
not cause any conflict. However, if a conflict exists, the server
may attempt to resolve it by itself and/or to send alerts to the
architects involved in the conflict using a conflict notification
message.
0073. Off-the-shelf software components may be used,
such as the GME Modeling Tool 401, a software modeling
tool from Vanderbilt University; the Drools conflict engine
419, a rule-based business logic integration platform devel
oped by the JBoss community; and the Prism connectors 411
and 431 which are part of Prism-MW, an event-based middle
ware platform created at USC. The communication between
all of the modules in the server may also rely upon PrismMW.
(0074 The Event Handler 403 and the event/update con
nector 407 may be used with the GME Modeling Tool 401 to
capture design decisions made by architects using the GME
Modeling Tool 401 via native API in the GME Modeling Tool
401. These may be packaged within Prism-MW events by the
Event Handler 403 and transferred to the event queue 409
and, in turn, the Prism connector 411. The Prism connector
411 may receive the events and utilize Prism-MW’s connec
tor facilities to send them to the conflict detector 420 in the
conflict detection software modeling server.
0075. In this particular configuration, the Drools conflict
engine 419 may be used to detect synchronization conflicts
and the GME's native meta-model checker 421 may be used
to detect syntactic conflicts. A GME's OCL constraint
checker (not shown) may also be used to detect semantic
conflicts.
0076. As a simple scenario of conflict detection, suppose
an architect A1 deletes a design element e1 from her model in
the GME modeling tool 401. Once the Prism-MW event
generated by this design decision arrives at the conflict detec
tor 420, each plugged-in conflict detection engine will ana
lyze it. The GME meta-model checker 421 and the Drools
conflict engine 419 may respond that the event does not cause
a conflict. Both engines may also store the event temporarily
or permanently, depending on the circumstances. The Prism
connector 431 then broadcasts the event back to all of the
other clients. There may be no need to broadcast the event
back to A1 who requested the change, as A1 already knows of
it.
0077 Suppose that architect A2 changes the geometric
location of e1 before the remote deletion event is applied to
her local model data. The event is sent to the conflict detector
420 in the same way. This time, however, the Drools conflict
engine 419 may detect that the model update is to an object
that no longer exists. In this instance, the Prism connector 431
may not broadcast the location event, since the intentions of
the two architects conflict. The Prism connector 431 may
instead notify the architects that are involved with the conflict
to ensure that they are aware of the situation. They may then
correct it through discussions with each other.
0078. The event storage 433 in FIG. 4 may be configured
to store each event that is received, as well as a copy of the
latest version of each model that is registered with the server,
based on events that have been determined not to create a
conflict.

Extending the Design
007.9 The design’s support for integrating and customiz
ing conflict detection engines uses two example conflict
engines: the Drools conflict engine 419 and the GME meta
model checker 421.

US 2012/0089960 A1

0080 Detecting synchronization conflicts may use the
Drools conflict engine 419: The Drools conflict engine 419 is
a production rule system that can be used to detect complex
events. The Drools conflict engine 419 may evaluate whether
a production rule triggers based on the facts it receives and
computes. A production rule may follow a simple pattern:
when <condition> then <action>. A complex event (e.g., a
synchronization conflict) may be a pattern-based abstraction
of other events and can also be evaluated using production
rule systems. Whenever the customized Drools conflict
engine 419 receives an event to evaluate, it may add the event
to its working memory and evaluate all synchronization con
flict rules.
0081 FIG. 5 illustrates an example of a conflict rule that
may be programmed in the server illustrated in FIG. 4. This
rule may detect when one client changes a model element that
had previously been deleted by another client. The system is
able to detect modifications to the same model elements
because all distributed instances of a model element may have
a single objectID in every client.
0082 Detecting syntactic and semantic conflicts may use
the GME meta-model checker 421. In the configuration
described thus far, the GME modeling tool 401 may be used
as the system modeling environment. Hence, this configura
tion's syntactic and semantic conflict detection engines need
to understand the syntax and semantic constraints of GME
models. To ensure that syntactic and semantic conflicts are
detected early, the relevant components of the GME modeling
tool 401 may be reused and integrated. The GME meta-model
checker 421 may contain the logic that manages the data
model and checks whether executing a received event keeps
the data model consistent with its meta-model.
0083. Other conflict engines may be integrated. To inte
grate a different OTS conflict engine, an adapter connector
may be used to translate events into invocations of the conflict
engine's API and to tie the results returned by the conflict
engine back to the conflicting events. The conflict detector
420 may check each event that the server receives from the
clients. The conflict detector 420 may be unaware of the
Syntax and the semantic constraints of the edited models. It
therefore may not itself check whether an event causes a
conflict, but instead forward each event to the conflict detec
tor connector 427.

0084. The conflict detector connector 427 may distribute
the event to each integrated conflict detection engine, which
in turn may evaluate the received event in parallel. The results
may be returned to the conflict detector connector 427 and
evaluated by the conflict detector 420, which may notify the
appropriate clients in the case of one or more conflicts.
0085 Example steps of a conflict detection process that
may be implemented with the system illustrated in FIG. 4 are
now illustrated and described. Some of these steps may not be
performed by Some systems, while Some systems may per
form additional and/or different steps.
I0086 FIG. 6 illustrates an example of a screen that may be
generated during the initialization of the conflict detection
software modeling server illustrated in FIG. 4. This screen
illustrates the conflict detector 420 displaying types of events
(changes) that it will not analyze for conflicts and the server
displaying that is ready to accept new connections from cli
entS.

I0087 FIGS. 7A and 7B illustrates examples of client log
in Screens that may be generated during the login of a first and
a different second client of the type illustrated in FIG. 4.

Apr. 12, 2012

respectively. Although not illustrated, the log-on dialog box
may also enable an architect to select one of several models
that the architect is developing. The login GUI 413 may be
configured to generate these screens and to otherwise manage
the login from the client side. The architect management
module 404 may correspondingly be configured to manage
the login from the serverside in association with the architect
database 417 and the database connector 423.
I0088 FIGS. 8A and 8B illustrate examples of screens that
may be generated after the logins illustrated in FIG. 7 on the
respective clients. These screens illustrate that two clients
have sent initial login information to the server. After a login
is complete, a complete copy of the most recent version of the
model that is being edited may be downloaded from the event
storage 433 in the conflict detection software modeling server
to the client that has logged in. A local copy of that model may
instead be used.

I0089 FIG. 9 illustrates an example of a screen that may be
displayed by the conflict detection software modeling server
illustrated in FIG. 4 after the logins illustrated in FIGS. 7A
and 7B. The screen illustrates the events received from the
clients, and the server sending a notice to the clients to down
load the current model data.

0090 FIG. 10A illustrates an example of a screen on the
first client, displaying a model of software after it is received
from the server illustrated in FIG. 4, including a design ele
ment 1001 within this model.

(0091 FIG. 10B illustrates an example of a screen on the
second client, displaying the same model of software after it
is received from the server illustrated in FIG. 4, including the
design element 1001 within this model.
0092 FIG. 11A illustrates the screen on the first client,
after an architect of the first client has moved the position of
the design element 1001.
0093 FIG. 11B illustrates the screen on the second client
after the movement of the design element 1001 that was made
by the architect of the first client has been determined by the
conflict detection software modeling server illustrated in FIG.
4 not to create a conflict.

0094 FIG. 12A illustrates the screen on the first client
after an architect has removed the design element 1001.
0095 FIG. 12B illustrates the screen on the second client,
before the deletion of the design element that was removed by
the architect on the first client has been determined not to
create a conflict by the server illustrated in FIG. 4.
0096. The second client may next request that the removed
design element 1001 be moved, since it does not yet know that
this would create a conflict. This may result in the issuance of
a conflict notification by the conflict detection software mod
eling server.
0097 FIG. 13A illustrates a conflict notification 1301 on
the screen of the first client after the architect on the second
client moved the removed design element 1001. FIG. 13B
illustrates a conflict notification 1303 on the screen on the
second client after the architect on the second client moved
the removed design element 1001.
(0098 FIG. 14 illustrates a report that the server that is
illustrated in FIG.4 may display after detection of the conflict
illustrated in FIGS. 13A and 13B. The screen illustrates the
message contents that include detailed information regarding
the change, the detected conflict and the information regard
ing the conflict, and the issuance of the two conflict notices
sent to the involved clients.

US 2012/0089960 A1

0099. Unless otherwise indicated, the clients and servers
that have been discussed herein, including their respective
modules, may each be implemented with a computer system
configured to perform the functions that have been described
herein for them, including each of their components. Each
computer system includes one or more processors, memory
devices (e.g., random access memories (RAMs), read-only
memories (ROMs), and/or programmable read only memo
ries (PROMS)), tangible storage devices (e.g., hard disk
drives, CD/DVD drives, and/or flash memories), system
buses, video processing components, network communica
tion components, input/output ports, and/or user interface
devices (e.g., keyboards, pointing devices, displays, micro
phones, Sound reproduction systems, and/or touch screens).
0100 Each computer system may be a personal computer,
mainframe, workstation, single user system, multi-user sys
tem, server, portable computer, hand-held device, cellphone,
Smartphone, tablet, or part of a larger system, Such a vehicle,
appliance, and/or telephone system.
0101 Each computer system may include one or more
computers at the same or different locations. When at differ
ent locations, the computers may be configured to communi
cate with one another through a wired and/or wireless net
work communication system.
0102) Each computer system may include software (e.g.,
one or more operating systems, device drivers, application
programs, and/or communication programs). When Software
is included, the software includes programming instructions
and may include associated data and libraries. When
included, the programming instructions are configured to
implement one or more algorithms that implement one more
of the functions of the computer system, as recited herein.
Each function that is performed by an algorithm also consti
tutes a description of the algorithm. The software may be
stored on one or more non-transitory, tangible storage
devices, such as one or more hard disk drives, CDs, DVDs,
and/or flash memories. The software may be in source code
and/or object code format. Associated data may be stored in
any type of Volatile and/or non-volatile memory.
0103) The components, steps, features, objects, benefits
and advantages that have been discussed are merely illustra
tive. None of them, nor the discussions relating to them, are
intended to limit the scope of protection in any way. Numer
ous other embodiments are also contemplated. These include
embodiments that have fewer, additional, and/or different
components, steps, features, objects, benefits and advantages.
These also include embodiments in which the components
and/or steps are arranged and/or ordered differently.
0104 For example, the event/update connector may be
configured to perform other functions, such as to time stamp
each event. Similarly, the Prism connector 411 may be con
figured to perform other functions, such as to manage the
login through the login GUI 413, and/or to add information
about the architect and/or the model being worked on to each
event. The architect management module 404 may be config
ured to authenticate each architect and to manage the data
base of architects that is stored in the architect database 417.
A single server may be configured to detect conflicts in mul
tiple models, each being worked on by the same or a different
set of architects. One or more of the conflict detection mod
ules, such as the synchronization detection module, may
instead be located within the client or within a separate physi
cal machine.

Apr. 12, 2012

0105. Unless otherwise stated, all measurements, values,
ratings, positions, magnitudes, sizes, and other specifications
that are set forth in this specification, including in the claims
that follow, are approximate, not exact. They are intended to
have areasonable range that is consistent with the functions to
which they relate and with what is customary in the art to
which they pertain.
0106 All articles, patents, patent applications, and other
publications that have been cited in this disclosure are incor
porated herein by reference.
0107 The phrase “means for when used in a claim is
intended to and should be interpreted to embrace the corre
sponding structures and materials that have been described
and their equivalents. Similarly, the phrase “step for when
used in a claim is intended to and should be interpreted to
embrace the corresponding acts that have been described and
their equivalents. The absence of these phrases in a claim
mean that the claim is not intended to and should not be
interpreted to be limited to any of the corresponding struc
tures, materials, or acts or to their equivalents.
0108. The scope of protection is limited solely by the
claims that now follow. That scope is intended and should be
interpreted to be as broad as is consistent with the ordinary
meaning of the language that is used in the claims when
interpreted in light of this specification and the prosecution
history that follows and to encompass all structural and func
tional equivalents. Notwithstanding, none of the claims are
intended to embrace subject matter that fails to satisfy the
requirement of Sections 101, 102, or 103 of the Patent Act,
nor should they be interpreted in Such a way. Any unintended
embracement of such subject matter is hereby disclaimed.
0109 Except as stated immediately above, nothing that
has been stated or illustrated is intended or should be inter
preted to cause a dedication of any component, step, feature,
object, benefit, advantage, or equivalent to the public, regard
less of whether it is or is not recited in the claims.
0110. The terms and expressions used herein have the
ordinary meaning accorded to Such terms and expressions in
their respective areas, except where specific meanings have
been set forth. Relational terms such as first and second and
the like may be used solely to distinguish one entity or action
from another, without necessarily requiring or implying any
actual relationship or order between them. The terms “com
prises.” “comprising, and any other variation thereof when
used in connection with a list of elements in the specification
or claims are intended to indicate that the list is not exclusive
and that other elements may be included. Similarly, an ele
ment proceeded by “a” or “an does not, without further
constraints, preclude the existence of additional elements of
the identical type.
0111. The Abstract is provided to help the reader quickly
ascertain the nature of the technical disclosure. It is submitted
with the understanding that it will not be used to interpret or
limit the scope or meaning of the claims. In addition, various
features in the foregoing Detailed Description are grouped
together in various embodiments to streamline the disclosure.
This method of disclosure is not to be interpreted as requiring
that the claimed embodiments require more features than are
expressly recited in each claim. Rather, as the following
claims reflect, inventive subject matter lies in less than all
features of a single disclosed embodiment. Thus, the follow
ing claims are hereby incorporated into the Detailed Descrip
tion, with each claim standing on its own as separately
claimed Subject matter.

US 2012/0089960 A1

The invention claimed is:
1. A Software modeling client comprising:
a server communication module configured to communi

cate with a remote conflict detection software modeling
server;

a modeling module configured to enable an architect to
design and edit a model of computer software, the mod
eling module including a user interface configured to
allow the architect to view the model, to request changes
to the model, and to view the model with changes made
to it; and

an event detection module configured to detect each
change to the model that the architect requests and to
cause the server communication module to communi
cate information about each change to the remote con
flict detection software modeling server,

whereby the modeling module is also configured to:
add each approved change to the model of computer

software that is made by a different software model
ing client, as specified by a notification that the server
communication module receives from the remote
conflict detection Software modeling server; and

remove or block each change to the model that the archi
tect made using the modeling module that creates a
conflict, as specified by a notification that the server
communication module receives from the remote
conflict detection software modeling server.

2. The client of claim 1 further comprising an event queue
configured to temporarily store information about each
change that is detected by the event detection module until
information about the change is communicated to the server.

3. The client of claim 1 wherein the event detection module
includes an event filter module configured to filter the events
that are detected by the event detection module according to
filter criteria So as to eliminate one or more types of events
from those that about which information is communicated to
the remote conflict detection software modeling server.

4. The client of claim 1 wherein the event detection module
is configured to communicate with the modeling module
through one or more APIs in the modeling module.

5. The client of claim 1 wherein the notification specifying
a conflict from the server includes information identifying the
architects that are involved with the conflict, elements in the
model that would conflict, and the actions that caused the
conflict.

6. A conflict detection Software modeling server compris
ing:

a client communication module configured to communi
cate with multiple software modeling clients that are
each designing a model of computer Software and to
receive information about changes to the model of com
puter software from each of the software modeling cli
ents;

a conflict detection module configured to:
receive information about the changes to the model of

computer Software from the client communication
module;

determine whether each change would cause a conflict;
when a change is determined not to cause a conflict,

cause the client communication module to communi
cate information about the change to the Software
modeling clients that did not send the information
about the change to the conflict detection software
modeling server;

Apr. 12, 2012

when a change is determined to cause a conflict, cause
the client communication module to communicate to
the software modeling client that did send the infor
mation about the change to the conflict detection Soft
ware modeling server that the change causes a con
flict.

7. The server of claim 6 wherein the conflict detection
module is configured to determine whether a conflict exists
based on a set of programmable rules.

8. The server of claim 6 wherein the conflict detection
module is configured to determine that a change causes a
conflict when the change causes a synchronization conflict.

9. The server of claim 6 wherein the conflict detection
module is configured to determine that a change causes a
conflict when the change causes a syntactic conflict.

10. The server of claim 6 wherein the conflict detection
module is configured to determine that a change causes a
conflict when the change causes a semantic conflict.

11. The server of claim 6 wherein the conflict detection
module includes a plurality of conflict detection sub-mod
ules, each configured to determine whether a change causes a
conflict of aparticular type, and wherein the conflict detection
module is configured to aggregate the results from the conflict
detection Sub-modules.

12. The server of claim 6 wherein the communication that
a change causes a conflict includes information identifying
the architects involved with the conflict, elements of the
model that are involved with the conflict, and the actions that
caused the conflict.

13. The server of claim 6 further comprising a conflict
resolution module configured to automatically resolve at least
certain types of conflicts.

14. The server of claim 13 wherein the conflict resolution
module is configured to automatically resolve the certain
types of conflicts based on programmable rules.

15. The server of claim 6 further comprising an architect
database configured to store information identifying archi
tects or clients that have registered with the server to modify
the model.

16. Non-transitory, tangible, computer-readable storage
media containing a program of instructions configured to
cause a computer system running the program of instructions
to function as a software modeling client that performs the
following process:

detects when an architect requests changes to a model of
computer Software;

communicates information to a remote conflict detection
Software modeling server about each change to the
model that is detected;

adds each approved change to the model of computer Soft
ware that is made by a different software modeling cli
ent, as specified by a notification from the remote con
flict detection software modeling server; and

remove or block each change to the model that the architect
made using the modeling module that creates a conflict,
as specified by a notification from the remote conflict
detection Software modeling server.

17. The media of claim 16 wherein the program of instruc
tions is configured to cause the computer system running the
program of instructions to temporarily store information
about each change that is detected in a queue until informa
tion about the change is communicated to the remote conflict
detection Software modeling server.

US 2012/0089960 A1

18. Non-transitory, tangible, computer-readable storage
media containing a program of instructions configured to
cause a computer system running the program of instructions
to function as a conflict detection software modeling server
that performs the following process:

receive information about changes to a model of computer
Software, each from one of multiple software modeling
clients that are designing the model;

determine whether each change would cause a conflict;
when a change is determined not to cause a conflict, com

municate information about the change to the Software
modeling clients that did not send the information about
the change to the conflict detection Software modeling
server; and

Apr. 12, 2012

when a change is determined to cause a conflict, commu
nicate to the software modeling client that did send the
information about the change to the conflict detection
Software modeling server that the change causes a con
flict.

19. The media of claim 18 wherein the program of instruc
tions is configured to cause the computer system to filter the
events that are detected according to filter criteria So as to
eliminate one or more types of events about which informa
tion is communicated to the remote conflict detection soft
ware modeling server.

c c c c c

