
A SEALANT for Inter-App Security Holes in Android

Youn Kyu Lee∗, Jae young Bang†, Gholamreza Safi∗, Arman Shahbazian∗, Yixue Zhao∗, and Nenad Medvidovic∗
∗Computer Science Department, University of Southern California †Kakao Corporation

941 Bloom Walk, Los Angeles, California, USA 90089 Seongnam, Gyeonggi, Korea 13494

{younkyul, gsafi, armansha, yixuezha, neno}@usc.edu jae.bang@kakaocorp.com

Abstract—Android’s communication model has a major secu-
rity weakness: malicious apps can manipulate other apps into
performing unintended operations and can steal end-user data,
while appearing ordinary and harmless. This paper presents
SEALANT, a technique that combines static analysis of app code,
which infers vulnerable communication channels, with runtime
monitoring of inter-app communication through those channels,
which helps to prevent attacks. SEALANT’s extensive evaluation
demonstrates that (1) it detects and blocks inter-app attacks
with high accuracy in a corpus of over 1,100 real-world apps,
(2) it suffers from fewer false alarms than existing techniques in
several representative scenarios, (3) its performance overhead is
negligible, and (4) end-users do not find it challenging to adopt.

I. INTRODUCTION

This paper targets a known vulnerability in the design of

Android’s communication model [1], in which components in a

single app or across multiple apps communicate by exchanging

messages called intents. Inter-component communication (ICC)

via intent exchange can expose a vulnerable surface to several

security attacks, including intent spoofing [2], unauthorized
intent receipt [2], and privilege escalation [3]. In these attacks,

a malicious app sends and receives intents in a way that appears

as if those are ordinary message exchanges.

A large volume of research has focused on ICC vulnera-

bilities in Android [2], [4]–[14]. However, existing detection
techniques target only certain types of inter-app attacks [4]–[6],

[15] and/or do not support compositional analysis of multiple

apps [2], [12], [14]. The state-of-the-art techniques [4], [5], [15]

employ data-flow analyses that rely on lists of frequently used

Android API methods [16], but tend to overlook ICC vulnerabil-

ities caused by custom methods. Moreover, these analyses [4]–

[6] have been shown to experience scalability problems when

applied on large numbers of apps [17]. Meanwhile, the runtime

protection techniques suffer from acknowledged frequent “false

alarms” [11], [15] because of the coarse granularity at which

they capture ICC information. Additionally, these techniques

assume a degree of expertise in Android security [8], [9], [11],

[13]. While certain techniques [15], [17] combine vulnerability

detection with runtime protection to aid ordinary end-users,

they also suffer from potentially large numbers of false alarms.

We present SEALANT (Security for End-users of Android via

Light-weight ANalysis Techniques), a technique that aims to

enable ordinary end-users to protect against inter-app attacks.

SEALANT identifies vulnerable ICC paths between a given

set of apps, inspects each intent sent via those paths at

runtime to detect potential attacks, and enables end-users to

block the intent on-the-fly. SEALANT is distinguished from

the existing research because (1) it simultaneously prevents

multiple types of Android inter-app attacks—with the current

implementation focusing on intent spoofing, unauthorized intent
receipt, and privilege escalation, (2) it extends the detection

coverage via a novel combination of static data-flow analysis

and compositional ICC pattern matching, (3) it causes fewer

false alarms than existing techniques through a finer-grained

characterization of ICCs, (4) it supports compositional analysis

scaling to a number of apps, and (5) it integrates static detection

with runtime monitoring and control of vulnerable ICC paths.

SEALANT comprises two tools: (1) Analyzer identifies

vulnerable ICC paths by performing static analysis on app

bytecode; (2) Interceptor is an extension to the Android frame-

work that manages inter-app intent exchanges. We elected to

modify Android over two other alternatives—instrumenting the

installed apps’ bytecode and acquiring administrator privileges,

i.e., “rooting”—because (1) once our approach is applied to a

device, it does not require altering any of the installed apps,

and (2) rooting itself introduces serious vulnerabilities [18].

We have evaluated SEALANT in four different ways. (1) We

assessed its effectiveness via comparative analysis against

existing techniques. SEALANT suffered from fewer false alarms

while blocking the same or greater number of vulnerable ICC

paths. (2) We performed a case study targeting Analyzer’s

ability to identify vulnerable ICC paths between a set of apps,

and Interceptor’s ability to selectively block those paths. To this

end, we used a test suite comprising 1,150 apps. The test suite

includes apps previously identified as vulnerable [17], an open-

source testing ground [19], externally developed real-world apps

that implement inter-app attacks, and real-world apps randomly

selected from publicly available sources [20], [21]. Analyzer
was able to identify vulnerable ICC paths with high accuracy,

while Interceptor was able to capture and block each identified

path. (3) We evaluated SEALANT’s performance by measuring

the analysis time of Analyzer on different numbers of apps, and

the resource overhead imposed by Interceptor’s runtime intent

inspections. Analyzer is scalable to a large number of apps,

while Interceptor requires nominal additional resources. (4) We

performed a user study and survey involving 189 Android end-

users in employing SEALANT . Overall, the users were able to

effectively use SEALANT to block vulnerable inter-app intent

exchanges and did not find it burdensome to use.

The research we present in this paper is based on our

prior work on inter-component communication in event-based

2017 IEEE/ACM 39th International Conference on Software Engineering

DOI 10.1109/ICSE.2017.36

311

2017 IEEE/ACM 39th International Conference on Software Engineering

1558-1225/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE.2017.36

312

systems (EBS) [22], [23]. While this paper focuses explicitly on

Android, SEALANT can be expanded to other EBS (e.g., [24]–

[28]) with certain modifications.

This paper makes four contributions: (1) SEALANT, a

technique that enables Android users to protect their devices

from multiple ICC vulnerabilities, with a proof-of-concept

implementation focusing on intent spoofing, unauthorized intent

receipt, and privilege escalation; (2) Analyzer, a tool that

accurately finds vulnerable ICC paths between apps through

a novel combination of data-flow analysis and compositional

ICC pattern matching; (3) Interceptor, an Android framework

extension that automatically detects malicious intents at runtime

and enables users to block them; and (4) extensive evaluations

of SEALANT that involve 1,150 Android apps, compare

SEALANT to existing alternatives, and engage real end-users.

Section II illustrates inter-app attacks. Section III describes

SEALANT’s architecture, Section IV its implementation, and

Section V its evaluations. Related work is discussed in

Section VI, and conclusions are presented in Section VII.

II. MOTIVATING EXAMPLES

In this section, we present simplified examples of the three

inter-app attack types that SEALANT targets: (1) intent spoofing,

(2) unauthorized intent receipt, and (3) privilege escalation.

Figure 1(a) and Listings 1 and 2 depict intent spoofing.

Figure 1(a) shows component M1 from malicious app MalApp1
that may send an intent to component V2 from victim app Vic-

App1. Listing 1 shows where VicApp1’s vulnerability resides:

V2 is designed to transfer money to a recipient specified by an

incoming intent. Listing 2 illustrates how M1 of MalApp1 sends

an explicit intent that specifies V2 as its destination component,

along with the attacker’s account number as the recipient. This

is an example of a vulnerable ICC path, from M1 to V2.

Figure 1(b) and Listing 3 illustrate unauthorized intent
receipt. In Android, if an intent is broadcast without proper

permission restrictions, a malicious component can receive it by

declaring attributes matching those of the intent. Component V3
of VicApp2 from Figure 1(b) is designed to broadcast intents to

components in the same app such as V4. Listing 3 shows V3’s

code that broadcasts an implicit intent on a click event, with the

action attribute ShowLocation and the location information.

Although not an intended receiver, malicious component M2 of

MalApp2 is able to eavesdrop by listening to ShowLocation
intents and to obtain the user’s current location. This is another

example of a vulnerable ICC path, from V3 to M2.

Figure 1(c) depicts privilege escalation. Component V6
of VicApp3 provides a sensitive API that is protected with

permission P1. While component V8 of VicApp4 is granted

P1, M3 of MalApp3 is not, which means that M3 is restricted to

directly access the API of V6. Nonetheless, M3 can still invoke

the API in an indirect way, via V8 which is not protected by

any permissions and can be triggered by any component via

an explicit intent. By triggering V8, M3 is able to access the

sensitive API of V6 without acquiring P1. This is an example

of a transitive vulnerable ICC path, from M3, via V8, to V6.

Component V3

VicApp2

Component V1

MalApp1 VicApp1

(b) unauthorized intent receipt (a) intent spoofing

(c) privilege escalation

Component V2

Component M1

Component V4

MalApp2

Component M2

Component V5

Component V6

Component V7

Component V8

MalApp3

Component M3

VicApp4 VicApp3

P1 P1

Fig. 1: Inter-App Attacks

Listing 1: ComponentV2 of VicApp1

1 public class V2 extends Activity {
2 public void onStart() {
3 Intent i = getIntent();
4 String recipient = i.getStringExtra("Recipient");
5 String amount = i.getStringExtra("Amount_USD");
6 sendMoneyToRecipient(recipient, amount); }}

Listing 2: Component M1 of MalApp1

1 public class M1 extends Activity {
2 public void onCreate (Bundle savedInstanceState) {
3 Intent i = new Intent();
4 i.setClassName("com.VicApp1", "com.VicApp1.V2");
5 i.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
6 i.putExtra("Recipient", ATTACKERS_ACCOUNT_NUMBER});
7 i.putExtra("Amount_USD", 1000000);
8 startActivity(i); }}

Listing 3: Component V3 of VicApp2

1 public class V3 extends Activity {
2 public void onClick(View v) {
3 LocationManager m = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);
4 Location location =
5 m.getLastKnownLocation(LocationManager.GPS_PROVIDER);
6 Intent i = new Intent() ;
7 i.setAction ("ShowLocation");
8 i.putExtra ("Location", location.toString());
9 sendBroadcast(i); }}

The above examples demonstrate that the attacks are ad-

ministered in a way that does not differ from ordinary intent

exchanges between apps. This makes the identification and

restriction of inter-app attacks especially challenging. Moreover,

since an ICC can be performed in an essentially invisible way

(e.g., via sendBroadcast() or through transitive paths), it is

difficult for end-users to recognize when the attacks are actually

committed. An app developer’s caution may minimize the risk

of the attacks, but it requires error-prone manual effort, while

end-users may still download other unsafe apps.

Although security violations such as these have been studied

in computer networks and distributed systems [24]–[29], those

techniques cannot be directly applied to Android due to the

specifics of its communication mechanism and features. For

example, role-based access control [24], [25] has been applied

in Android as a form of permission grants; however, it can

be violated by privilege escalation attacks. Encryption [26],

312313

[27], another popular technique, is not a good fit for Android

due to encryption-key distribution issues and limited mobile

resources. Meanwhile, techniques specifically targeting Android

have either not focused on these issues or have been unable to

adequately resolve them, as detailed in Sections V and VI.

III. SEALANT

This section introduces SEALANT , a technique that automat-

ically identifies vulnerable ICC paths between Android apps,

and enables users to control the ICCs on those paths at runtime.

SEALANT recognizes each instance of ICC as a relation

between a sender, a receiver, and an intent. When an intent

from a sender component matches an intent that can be received

by a receiver component (either explicitly or through an intent

filter), SEALANT reports an ICC relation. SEALANT builds an

ICC graph in which vertices are components and edges are

the ICC relations. It then extracts all possible vulnerable ICC

paths in the ICC graph and monitors them at runtime. When

an instance of ICC matches one of the extracted vulnerable

paths, SEALANT may block it based on the user’s choice.

Figure 2 shows two key components that comprise

SEALANT: (1) Analyzer uses static analysis to generate a

list of vulnerable ICC paths between apps, and runs on a

user’s computer or as an online service; (2) Interceptor extends

Android to perform runtime monitoring and enable advanced

ICC control such as blocking of specific ICCs identified by

Analyzer. SEALANT’s overall process is as follows:
1) Analyzer processes the APK1 files of the installed apps

and identifies the vulnerable ICC paths between them.

2) Analyzer can optionally contact expert users to confirm

specific vulnerable paths that should be monitored.

3) Analyzer feeds the highlighted vulnerable ICC paths to

the Interceptor in a pre-defined format (SEALANT List).
4) At runtime, whenever an intent is sent, Interceptor captures

the information of the corresponding ICC path (e.g.,

sender’s name) from Android’s ActivityManager.2

5) If the captured path information matches one of the

vulnerable paths in the SEALANT List, Interceptor contacts

the end-user to determine whether to propagate the intent.

6) Based on the end-user’s choice, Interceptor will instruct

the ActivityManager either to block or to route the intent.
We discuss Analyzer and Interceptor in more detail next.

A. Analyzer

Analyzer performs static analysis on APK files in four phases:

(1) analyze target apps, (2) build ICC graph, (3) find vulnerable

paths, and (4) generate SEALANT List. Analyzer is novel in that

it returns multiple types of vulnerable ICC paths in a single

pass and distinguishes different types of threats, which enables

tailor-made countermeasures. It does so by focusing, both,

on the data-flow between components and on compositional

patterns of ICCs derived from published literature [2]. This

enables Analyzer to identify a larger number of vulnerable paths

and path types than existing techniques (e.g., paths involving

1APK is an archive file format that distributes and installs Android apps.
2ActivityManager is the Android component that governs ICC.

End-user

“Analyzer”

“Interceptor”

App#1 App#2 App#3

Application Layer

Framework Layer

. . .

*.APK

SEALANT Component Modified Android Component

2.

4. 6.

5.

1.

3.

SEALANT
List

ActivityManager

End-user’s device

Fig. 2: Overview of SEALANT’s Operation

custom methods). Its summary-based model enables analyzing

a number of apps at a time, as well as reusing prior analysis

results when apps are installed, updated, or removed.
1) Analyze Target Apps: Analyzer extracts and summarizes

each app’s architectural information by analyzing the APK

file. The summary includes components, intents, intent filters,

and permissions. Analyzer extracts each component’s name,

package, permissions held or required, and exported status.

To communicate across apps, an Android component must

have its exported status set to true or contain an intent filter.

Analyzer only considers exported components in creating ICC

graphs. Analyzer extracts each intent’s attributes (i.e., target

component, action, categories, and data) using string constant

propagation [22]. If an attribute’s value cannot be determined,

Analyzer conservatively assumes it to be any string.

Once extraction is completed, Analyzer examines each

component’s vulnerability. A vulnerable component is the

one containing an intra-component path between an ICC call

method and a sensitive method. An ICC call method is a

standard Android method for sending or receiving intents (e.g.,

startActivity()) [30]. A sensitive method is an Android

API method that can access sensitive user information (e.g.,

getLastKnownLocation()) or trigger a sensitive operation

(e.g., sendTextMessage()) [16], [31]. Analyzer identifies the

relevant paths by employing a static taint analysis that tracks

data-flows between methods [32]. If the direction of an intra-

component path is from an ICC call method to a sensitive

method, Analyzer sets the component’s vulnerability type to

Active, because the component is vulnerable to attacks such as

intent spoofing and privilege escalation. If the intra-component

path is from a sensitive method to an ICC call method, the

vulnerability type is Passive, representing attacks such as

unauthorized intent receipt. In Figure 1(b), for example, the

vulnerability type of V3 is Passive, because the location data

directs from getLastKnownLocation() to sendBroadcast().

If a component has multiple intra-component paths, Analyzer
creates separate component models for each path.

By managing a summary-based model of each app, Analyzer
is scalable to inspecting a number of apps in a single pass,

as evaluated in Section V-C1. Furthermore, when apps are

313314

TABLE I: Attributes of component and intent in ICC graph

Entity Attributes Description

component

Name The name of the component

Pkg The name of the package to which the component belongs

VulType The type of vulnerability (i.e., Active, Passive, or null)

VulMeth The name of the sensitive method (e.g., sendTextMessage())

PermUse The name of the permission that the component holds

PermReq The name of the required permission to access the component

intent

Target The name of the component to which the intent is directed

IntentAttr The intent’s attributes: action, category, data type, and data scheme

Sender The name of the component which sends the intent

SenderPkg The name of the package to which the sender component belongs

installed or updated subsequent to running Analyzer, Analyzer
extracts only the architectural information from the newly

updated apps and reuses the prior analysis results on the rest.

2) Build ICC Graph: With the extracted information,

Analyzer builds an ICC graph based on the rules from Android’s

API reference documentation [33]. It defines an edge as a tuple

< s, r, i >, where s is a sender and r a receiver component, and

i is an intent between them. Component and intent are entities

that manage summarized information as shown in Table I.

Since the extraction of architectural information is performed

in a conservative way (specifically, relying on attributes of

intents), the set of edges may include false positives. However,

this will not affect SEALANT’s runtime accuracy because no

ICC instances to be routed via those edges will ever be initiated.

3) Find Vulnerable Paths: Analyzer implements Algo-

rithm 1 on the ICC graph to identify vulnerable paths. Analyzer
marks an edge as vulnerable (1) if it has a vulnerable component

at one or both ends, or (2) if it forms a particular compositional

pattern. To find vulnerable transitive ICC paths, Analyzer
recursively identifies a set of connected edges that can access

a vulnerable component by calling the PathFinder method

(Algorithm 2). xy indicates attribute y of entity x (depicted in

Table I), and x.y represents element y in edge x.

Analyzer first parses edges into two sets: inter-app (IAC)

for edges between components belonging to different apps,

and inter-component (ICC) otherwise. Algorithm 1 iterates

over each edge e in IAC ∪ ICC (lines 5-19) and considers

four different cases that cover all types of vulnerable paths

we target in this paper: the first two cases identify paths that

involve vulnerable components; the latter two cases identify

paths based on previously identified compositional patterns [2].

Case 1 (line 8) occurs when e directs to a receiver

vertex whose vulnerability type is “Active”. If e is an IAC

edge, Algorithm 1 determines the type of attack by calling

PermCompare(c1,c2,m) (line 10), a method that returns the

type of attack by comparing the permissions of components

c1 and c2, where m is a sensitive method that forms an intra-

component path with an ICC call method within c2. If c2 holds

a permission that c1 does not, and the permission is required

to use m [31], PermCompare returns “privilege escalation”;

otherwise, it returns “intent spoofing”. Once the type of attack

is determined, Algorithm 1 adds {e} to the set VulPaths that

contains all detected vulnerable ICC paths (line 10), and then

Algorithm 1: Identifying vulnerable ICC paths

Input: G ⇐ an ICC graph
Output: VulPaths ⇐ a set of vulnerable paths

1 Let IAC be a set of IAC edges in G
2 Let ICC be a set of ICC edges in G
3 Let s be a sender component
4 Let r be a receiver component
5 foreach e ∈ IAC∪ ICC do
6 s ⇐ e.sender
7 r ⇐ e.receiver
8 if (rVulType = “Active”) then
9 if e ∈ IAC then

10 add ({e},PermCompare(s,r,rVulMeth)) to VulPaths

11 PathFinder(s,r,{e})
12 else if (sVulType = “Passive”) and (e ∈ IAC) then
13 add ({e},“unauthorized intent receipt”) to VulPaths

14 else if (e ∈ IAC) then
15 foreach (g ∈ ICC) do
16 if (r = g.receiver) then
17 add ({e},“intent spoo f ing”) to VulPaths

18 else if (s = g.sender)∧ (e.intent = g.intent) then
19 add ({e},“unauthorized intent receipt”) to VulPaths

Algorithm 2: PathFinder

Input: s,r ⇐ component, E ⇐ a list of distinct edges
Output: updated VulPaths

1 foreach f ∈ IAC ∪ ICC do
2 if (f .receiver = s) and (∀e ∈ E, e.receiver �= f .sender) then
3 append f to E
4 if (∃e ∈ E,e ∈ IAC) then
5 add (E,PermCompare(f .sender,r,rVulMeth)) to VulPaths

6 PathFinder(f .sender,r,E)

7 remove the last element o f E

calls PathFinder to identify transitive ICC paths (line 11).

As depicted in Algorithm 2, PathFinder iterates over each

edge f ∈ IAC∪ ICC, to check if f connects to the previously

identified edge’s sender component s, and if f ’s own sender is

a newly visited component (line 2). If so, PathFinder appends

f to the list of distinct connected edges E (line 3). If E contains

an inter-app edge (e ∈ IAC), PathFinder determines the type of

attack by calling PermCompare, and adds E to VulPaths (line

5). PathFinder recursively identifies other components that are

connected to a vulnerable component through edges in the

ICC graph. It stops its processing when it visits all transitively

connected components to the original edge’s receiver r or

reaches an already visited component. When it finishes iterating,

PathFinder removes the last element from E to enable correct

exploration of additional transitive paths.

Case 2 (lines 12-13 in Algorithm 1) deals with the situation

when the vulnerability of e.sender is Passive and e ∈ IAC,

which may result in leaking sensitive information between

apps through e. If so, the type of attack is set to “unauthorized
intent receipt” and {e} is added to VulPaths (line 13).

Case 3 (lines 14-17) occurs when edges e∈ IAC and g∈ ICC
(e �= g) both lead to the same receiver vertex. It represents a

pattern of attack in which g is an intended access to r within an

314315

app, but e may be a spoofed access from a malicious component

across apps. In this case, the type of attack is set to “intent
spoofing” and the edge {e} is added to VulPaths (line 17).

Case 4 (lines 18-19) occurs when edges e and g share the

same sender and intent. If g represents an originally intended

receipt within the app and e an unintended receipt across apps,

Algorithm 1 will set the type of attack to “unauthorized intent
receipt” and append {e} to VulPaths (line 19).

4) Generate SEALANT List: As the last step, Analyzer
generates the SEALANT List based on VulPaths, the output

from the previous phase. Analyzer first normalizes the output

by checking for redundant paths. It then transforms the

information about identified paths into a pre-defined format

that is compatible with SEALANT’s Interceptor component.

B. Interceptor
Interceptor monitors and analyzes each instance of ICC.

Whenever an ICC is requested, Interceptor checks whether it

is specified in the SEALANT List. Interceptor’s ICC control

strategy is distinguished from competing techniques due to

its finer-grained characterization of ICC paths based on (1)

sender, (2) receiver, and (3) intent. As evaluated in Sections V-A

and V-B, this increases the accuracy in blocking ICCs.
Interceptor resolves two challenging issues: (1) extracting

each component’s information at runtime to effectively prevent

malicious ICCs, while (2) minimizing the impact on Android’s

functionality. Interceptor captures a sender component’s in-

formation by instrumenting the framework-level class of each

type of component (e.g., Activity) in the Android framework,

while it captures an intent’s and a receiver’s information by

extending a core component that governs intent routing (i.e.,

ActivityManager). Interceptor minimizes the impact on Android

by avoiding removal of standard components or modification

of core methods (further discussed in Sections IV and V-C).
1) Interceptor’s Architecture: Interceptor extends the An-

droid framework with four components, as depicted in Fig-

ure 3. Three components—Blocker, ChoiceDatabase, and

ListProvider—are newly added, while one—ActivityManager—

is a modification of an existing Android component.
Blocker interacts with end-users and performs Intercep-

tor’s core functionalities: monitoring, matching, and blocking.

MalApp1
Component M1 {
…

startActivity(intent i)
…

Application Layer

Framework Layer

intent i

from “who”
send “what”

to “whom”

Component V2 {
…

onStart(){
…

End-user
Block

intent i

Interceptor Component Modified Android Component

VicApp1

ListProvider

2.

3.

5.

1.

4.

6.

ChoiceDatabase

3

Blocker

Class Activity
…

startActivity(intent i)
…

ActivityManager

1.

Fig. 3: The Architecture and Operation of Interceptor

Blocker directly communicates with ActivityManager to obtain

the detailed information of each instance of ICC, and to possibly

induce ActivityManager to block a particular instance of ICC.

Blocker imports the SEALANT List from ListProvider, and

refers to the previously made choices from ChoiceDatabase.
ActivityManager controls every instance of ICC processed

through the Android framework, by collaborating with other

Android components (e.g., PackageManager). We extended Ac-
tivityManager to capture the information of each ICC instance

(sender and receiver components, and intent’s attributes), share

the information with Blocker, and block a particular instance

of ICC upon Blocker’s request.
ChoiceDatabase stores end-user choices (to block or route)

for each vulnerable ICC path. Stored choices are automatically

applied when the same ICC is requested, and can be removed

upon end-user’s request. When a new SEALANT List is

imported, ChoiceDatabase expunges only the choices that

correspond to the updated or removed apps.
Finally, ListProvider imports and maintains the SEALANT

List. When a SEALANT List is installed in the pre-defined space

of the user device (e.g., external SD card), ListProvider imports

it and maintains the specified information as a permanent

condition until a new SEALANT List is introduced.
2) Interceptor’s Operation: Figure 3 illustrates the inter-

action among Interceptor’s four components. For clarity, the

depicted six-step scenario is based on the example from Listings

1 and 2, but it is reflective of Interceptor’s operation in general.

1) When M1 of MalApp1 tries to send intent i by calling

startActivity(), request is routed to ActivityManager.

2) ActivityManager extracts sender’s (i.e., M1’s) information

and searches for components permitted to receive intent

i. If a receiver is identified (i.e., V2 of VicApp1), Activi-
tyManager passes the ICC information to Blocker.

3) After receiving information about the ICC, Blocker first

examines ChoiceDatabase. If a choice for the ICC already

exists, Blocker induces ActivityManager to act (block or

route the ICC) without engaging the end-user.

4) In case no corresponding choice exists in ChoiceDatabase,

Blocker scans the SEALANT List provided by ListProvider.

5) If the information about the requested ICC matches that in

the SEALANT List, Blocker will give the user four options:

(1) allow the ICC once, (2) block it once, (3) allow it

always, and (4) block it always. If the user selects options

(3) or (4), her choice will be stored in ChoiceDatabase.

6) If the end-user chooses to allow (resp. block) the requested

ICC, Blocker will instruct ActivityManager to send intent

i to V2 (resp. trap it).

3) Interceptor’s Strategy for Blocking ICCs: Interceptor is

engaged between the times when an intent is first requested and

when it is actually dispatched to its destination. Interceptor’s

operation may thus cause a delay in processing intents, which

may be exacerbated by the number of vulnerable ICC paths in

the SEALANT List. However, since Android’s ICC is performed

via asynchronous API calls, we hypothesize that this delay will

not significantly impact the system’s operation. In Section V-C,

we empirically evaluate Interceptor’s performance overhead.

315316

In case when an end-user has blocked a requested ICC, the

apps that are involved in the ICC will not get any response

to their request back from the framework. Since Android

implements ICCs asynchronously, those apps will simply “skip”

the corresponding operation without causing runtime crashes.

To block a vulnerable transitive ICC, Interceptor begins

by matching the first path of the vulnerable transitive ICC

path and setting its transitive_flag to true. This flag is

managed per each vulnerable transitive ICC path and remains

true as long as the subsequently requested ICCs match the

subsequent paths in the vulnerable transitive path. Once the

last path of the vulnerable transitive ICC path is reached,

Interceptor alerts the end-user and resets transitive_flag
to false. In the example from Figure 1(c), let us assume that

the vulnerable transitive ICC path M3 → V8 → V6 is in the

SEALANT List. If M3 launches V8 via an intent, Interceptor
will set transitive_flag to true. Then, if V8 launches V6
via an intent, Interceptor will alert the user and reset the flag.

IV. IMPLEMENTATION

We have implemented SEALANT’s Analyzer as a stand-alone

Java application that receives as input a set of Android apps in

APK files, and exports a SEALANT List in the pre-defined XML

format. Analyzer’s implementation combines approximately

3,000 newly written LOC with three off-the-shelf tools. The

tools are used in the first of Analyzer’s four phases (recall

Section III-A). Analyzer integrates two static analysis tools,

IC3 [34] and COVERT [7], to extract architectural objects

from apps. We employed both tools because neither of them

alone discovers all of the needed information: IC3 misses

outbound intents in certain scenarios [34], while COVERT

only returns coarse-grained intent information that excludes

certain attributes (e.g., data type) [7]. Analyzer orchestrates

the two tools together and combines their outputs in order

to generate a more complete list of architectural objects. In

identifying intra-component paths between ICC call methods

and sensitive methods, Analyzer uses FlowDroid [32], a highly

precise intra-component taint analysis tool for Android.

We implemented SEALANT’s Interceptor on top of Android

Open Source Project (AOSP) 4.4.4 KitKat [35], which is the

most popular version of Android [36] today. We directly mod-

ified the source code of several standard Android components

including ActivityManagerService, ActivityManagerNative, and

IntentFirewall. In total, we introduced about 600 LOC spread

over 10 classes. To minimize the impact on the original

functionality of Android, we did not remove any standard

components or methods. Our modification was limited to parts

of Android that are usually a layer beneath manufacturers’

customizations, and can easily be applied to Android versions

4.4 and later without significant changes. We were able to

successfully run Interceptor’s system image, both, on the

Android emulator [37] and on a Google Nexus 7 device.

Since framework-level components in Android do not

provide a user interface (UI), we also implemented an Android

app that provides a UI to perform (1) pushing the SEALANT
List from an external SD card to Interceptor’s ListProvider,

(2) removing the list from ListProvider, and (3) removing

previous choices from Interceptor’s ChoiceDatabase.

Running SEALANT requires compiling Interceptor’s source

code with the provided drivers, and installing the image files

using the freely available Android debug bridge [38] and Fast-

boot [39]. This cost can be minimized by bundling SEALANT
with Android. SEALANT’s code, required drivers, and compiled

tools are available at http://softarch.usc.edu/sealant/.

V. EVALUATION

We evaluate SEALANT for effectiveness (Section V-A),

accuracy (V-B), performance (V-C), and usability (V-D).

A. Effectiveness

To the best of our knowledge, two existing works share

SEALANT’s goal of providing protection of end-users from

inter-app attacks: SEPAR [15] (previously named Droid-

Guard [17]) and XmanDroid [3], [11]. SEPAR identifies

vulnerable surfaces of a set of apps via static analysis and uses

dynamic memory instrumentation that hooks the method calls

of target apps at runtime. For example, in the scenario from

Figure 1(a), SEPAR would identify the vulnerability of V2 and

hook the startActivity() method that sends an intent to V2.

XmanDroid is a technique that only targets privilege escalation
attacks by leveraging an extension to Android. XmanDroid

enables a user to pre-define a list of ICC restriction policies,

and automatically blocks ICCs that match any of those policies.

An ideal comparison of SEALANT against these two tech-

niques would have included executing their implementations in

a controlled setting and/or on a set of real-world Android apps.

However, the implementation of XmanDroid we obtained from

its authors only runs on a prior version of Android (2.2.1), while

the current prototype implementation of SEPAR is missing

certain features covered by the underlying technique (e.g., the

policy enforcement module). In Section V-B, we do evaluate

SEALANT directly against one of the implemented features

of SEPAR. We tried unsuccessfully to build an installation

of XmanDroid on several recent versions of Android. Given

the changes in Android since 2.2.1, continuing with this

strategy proved impractical. For these reasons, we decided

to analytically compare the three techniques, relying on the

published algorithms of SEPAR [15] and XmanDroid [3], [11].

1) Comparison with SEPAR: A detailed comparison of

SEALANT and SEPAR using probabilistic random variables

to capture their respective operations can be found at

http://softarch.usc.edu/sealant/. Here we provide a

summary of that analysis. SEALANT raises fewer false inter-

app attack alarms compared to SEPAR, because SEPAR does

not support a finer-grained characterization of ICC paths (i.e.,

sender, receiver, and intent). For example, in the scenario

depicted in Figure 1(a), whenever an explicit intent is routed

to V2, SEPAR would raise an alarm, even if the intent was

sent from the component in the same app (i.e., V1).

2) Comparison with XmanDroid: SEALANT suffers from

fewer false negatives than XmanDroid. The detection mecha-

nism of XmanDroid requires a user to explicitly specify policies

316317

TABLE II: Applying SEALANT on the 135 Apps in Our Core Test Suite

Attack Type
of Test Suite

Number of Apps Vulnerable ICC Paths Identified ICC Paths (Precision / Recall) Blocked ICC Paths (Precision / Recall)
Vulnerable Malicious “Trick” Direct Transitive SEPAR IccTA Analyzer Interceptor

IS 27 26 4 25 1 0.00 / 0.00 1.00 / 0.04 1.00 / 0.96 1.00 / 1.00
UIR 26 25 4 25 0 0.50 / 0.20 1.00 / 0.16 1.00 / 0.92 1.00 / 1.00
PE 8 11 4 4 4 0.00 / 0.00 0.00 / 0.00 1.00 / 1.00 1.00 / 1.00

Total 61 62 12 54 5 0.50 / 0.08 1.00 / 0.08 1.00 / 0.95 1.00 / 1.00
IS = intent spoofing; UIR = unauthorized intent receipt; PE = privilege escalation.

indicating the types of inter-app attacks she wishes to detect and

ICC paths to monitor at runtime. This may omit critical inter-

app attacks. Recall the privilege escalation attack scenario from

Figure 1(c). When component M3 in MalApp3 requests an ICC

to access V8 in VicApp4, XmanDroid inspects the permissions

of MalApp3 and VicApp4 based on the pre-defined policies.

Although a few general policies for XmanDroid have been

proposed [11], they do not cover all vulnerability scenarios. In

the above scenario, if a user-specified policy does not prohibit

an ICC between an app with permission P1 and another app

without it, XmanDroid will not raise an alarm. Since SEALANT
inspects all ICC paths via static analysis to identify vulnerable

paths, it does not suffer from this type of false negative.
SEALANT also suffers from fewer false positives than Xman-

Droid. XmanDroid finds ICCs that match policies specifying

the sender and receiver permission combinations. However,

this would also block safe ICCs initiated by a benign app with

an identical set of permissions as a malicious app. Suppose

that XmanDroid has a policy that would block ICCs between

MalApp3 and VicApp4 in the scenario depicted in Figure 1(c),

and the device had another app, BenignApp, which is confirmed

as reliable and holds identical permissions to MalApp3. In that

case, even if BenignApp initiated an ICC to a method of

VicApp4 that does not require P1, XmanDroid would block

that ICC. SEALANT would not trigger such a false alarm.

B. Applicability and Accuracy
We evaluated Analyzer’s accuracy in identifying vulnerable

ICC paths by comparing its results against those of SEPAR [15],

[17] and IccTA [4], [40], state-of-the-art tools for ICC vul-

nerability detection [5], [6], [32]. We evaluated Interceptor’s

ability to block vulnerable ICC paths at runtime. We used a

test suite of 1,150 Android apps in total.
1) Experimental Setup: To build our test suite, we first

selected several real-world apps that are vulnerable to inter-app

attacks. Among the apps that were previously identified [15]

from repositories such as Google Play [20], F-Droid [41],

MalGenome [21], and Bazaar [42], we selected 13 that are

exposed to the three types of attacks SEALANT targets. We also

included six apps from DroidBench 2.0 [19], an app collection

for benchmarking ICC-based data leaks. Since several of the

19 vulnerable apps did not have readily available malicious

apps targeting them, we built 25 malicious apps, each of

which performed one inter-app attack. To mitigate internal

threats to the validity of our results, we also asked 39 graduate

students at University of Southern California (USC) to build

sets of apps that implement inter-app attacks based on published

literature [2], [11]. Each of those sets was either a pair of apps

forming a simple path, or a trio of apps forming a transitive

path. Each set consisted of at least one vulnerable app and

at least one malicious app that exploits the vulnerable app.

Without any intervention by the authors, the students built 41

distinct sets. This yielded 91 apps in total, of which 47 were

new, while 42 were modified and 2 unmodified apps obtained

from public sources [43], [44].

In total, this yielded 65 sets containing 135 apps, with 54

vulnerable ICC paths and 5 vulnerable transitive ICC paths.

To ensure that inter-app attacks can be actually launched, we

manually inspected the code of each set, and installed and ran

the set on a Google Nexus 7. We confirmed that the attacks from

the malicious apps were successfully launched and exploited

the vulnerable apps by observing the apps’ behavior via the

device’s UI and via logcat, a native Android tool for monitoring

system debug outputs [45]. Our test suite also includes 12 “trick”

apps containing vulnerable but unreachable components, whose

identification would be a false warning. We divided this core
test suite into three different groups, based on the type of attack

to which a vulnerable app is exposed, as shown in Table II.

Subsequently, we created an expanded test suite totaling 1,150

apps, by including another 1,015 apps randomly selected from

Google Play [20] and MalGenome [21].

2) Evaluation of Analyzer: We evaluated SEALANT’s

Analyzer for accuracy in identifying vulnerable ICC paths

as compared to SEPAR and IccTA. We used our core test suite

to measure all three approaches’ (1) precision, i.e., identified

ICC paths that were actually vulnerable, and (2) recall, i.e.,

the ratio of identified to all vulnerable ICC paths. As depicted

in Table II, Analyzer detected vulnerable ICC paths with

100% precision and 95% (56 of 59) recall. It was unable

to correctly extract intent information in three cases due to

the inaccuracies inherited from IC3 [34] and COVERT [7]

(recall Section IV). Analyzer correctly ignored all “trick” cases

with unreachable vulnerable paths. SEPAR had 50% precision

and 8% recall. This is primarily because SEPAR was designed

(1) to identify vulnerable components or interfaces rather than

specific ICC paths between them and (2) to return an ICC

path only when both sender and receiver contain sensitive

Android API methods [16], hampering its applicability in cases

such as privilege escalation via a transitive ICC. IccTA had

100% precision and 8% recall. Since it targets a single type

of attack (privacy leaks), IccTA also returned an ICC path

only when it involved sensitive API methods [16]. Although

SEALANT outperformed SEPAR and IccTA in our evaluation, it

is important to note that SEPAR and IccTA support both intra-

and inter-app analysis and may detect additional vulnerabilities

that SEALANT does not.

We then used our expanded test suite of 1,150 apps (9,964

components, 20,787 ICC paths). We created 23 non-overlapping

bundles, each comprising 50 apps randomly selected from

317318

TABLE III: Analyzer’s Performance on Different Num. of Apps

Number of Apps 25 50 75 100
Avg. Number of Components 237 553.5 761 1200

Avg. Number of ICCs 218 701.5 1110.5 1690.5
Avg. Analysis Time (Sec.) 22.17 42.24 107.27 118.43

the suite. We created 50-app bundles because this number

is higher than the recently cited number of apps an average

smartphone user regularly uses each month [46]. We ran all

three tools on each bundle and manually checked if each

identified ICC path is indeed vulnerable. Analyzer flagged

86 ICC paths, with 93% precision. The six false-positives

were caused by IC3’s inaccuracy in identifying intents and

COVERT’s omission of intent attributes in certain scenarios.

SEPAR and IccTA were unable to analyze the bundles on four

different hardware configurations. SEPAR’s logs indicated that

it was unable to generate flow-analysis results in some cases,

while it did not return any vulnerabilities in other cases. IccTA

invariably crashed; it was unable to analyze more than one app

at a time in more than 75% of our attempts.

3) Evaluation of Interceptor: We evaluated Interceptor’s

accuracy in detecting and blocking malicious ICCs at runtime.

To monitor all ICCs exchanged on a device, we integrated a

logging module that outputs information of each ICC instance

via logcat [45] into ActivityManager (recall Section III). We

installed the 135 apps in our core test suite on a Google Nexus

7 with Interceptor set up, ran Analyzer on the device, and

provided the resulting SEALANT List to Interceptor.

To run test scripts that trigger ICCs, we used monkeyrun-

ner [47], an Android tool for running test suites. We designed

each script to trigger one type of vulnerable ICC in the

SEALANT List as well as various benign ICCs. We configured

the scripts to choose to block an ICC when Interceptor prompts

for a blocking choice. We repeated executing each script until

we accumulated 30 blocked ICCs. At the end of each test

script execution, we manually inspected the logs in order to

measure (1) precision, i.e., if all blocked ICCs corresponded to

vulnerable paths specified in the SEALANT List, and (2) recall,
i.e., if Interceptor allowed any ICC attempts over the vulnerable

paths. Interceptor was able to block vulnerable ICCs in the

core test suite with perfect precision and recall (see Table II).

C. Performance

1) Evaluation of Analyzer: To evaluate the performance of

Analyzer, we used a PC with an Intel dual-core i5 2.7GHz CPU

and 4GB of RAM. We divided our expanded test suite into four

categories with different numbers of apps (25, 50, 75, and 100).

For each category, we created ten different bundles randomly

selected from the 1,150 apps, and ran Analyzer on each bundle.

On average, extracting architectural information from each app

took 77.95s and identifying vulnerable ICC paths took 1.08s
per app. While the extraction is relatively time-consuming, in

scenarios where an app is newly installed or updated, Analyzer
reuses the previously extracted app models to minimize the

execution time. It performs the extraction only on the new app,

and then runs the vulnerable path identification over all apps.

TABLE IV: Differences in Execution Times (in milliseconds)

Mean Min Max Std Dev

Interceptor 25.51 11.31 81.12 10.22

AOSP 25.20 10.09 45.85 7.18

Difference 0.31 1.22 35.27 3.04

Table III shows the average numbers of components and ICCs

in each category. Since our approach manages an individual

summary-based model of each app, the analysis time scales

linearly with the number of apps.

2) Evaluation of Interceptor: To evaluate Interceptor’s im-

pact on performance, we measured the differences in execution

times between Android with Interceptor and without it (in

the remainder of this section, referred to as “Interceptor” and

“AOSP” [35], respectively). We configured the two environments

to be highly similar and to reasonably reflect the real-world.

We employed the Google Nexus 7 in both environments and

configured both to use Android KitKat 4.4.4. We installed the

50 most popular third-party apps [48] on the devices.

To observe Interceptor’s worst-case performance overhead,

we manually created a SEALANT List that would induce the

longest execution time. The list contained 10 paths (amounting

to 20% of the installed apps), none of which matched the actual

ICC paths between the 50 installed apps. This maximized the

overhead of Interceptor’s detection operation which sequentially

matches an ICC to each path in its list. The above numbers

were selected because they reflect (in fact, surpass) those found

in the real-world: an average user regularly uses about 30 apps

per month [46], and around 10% of Android apps are vulnerable

to inter-app attacks [17]. To trigger a large number of ICCs

on the test devices, we used Monkey [49], which generates

pseudo-random streams of user- and system-level events on

a target device. We used the same seed value in Interceptor
and AOSP so that Monkey would generate identical event

sequences in both environments. We injected 5,000 events in

each environment and measured the time it took to process

each event. We repeated this five times to mitigate the impact

of conditions such as battery-status changes.

Table IV describes the results we obtained. The difference

in mean execution times was less than 1ms, and in maximum

execution times under 40ms. Differences of this degree are

negligible because the threshold at which an end-user begins

noticing slowdown in mobile app response is 100-200ms [50].

Interceptor introduces low overhead because it simply extends

an existing operation that AOSP already regularly performs to

match a requested ICC with the list of paths on the device [35].

D. Usability

When an intent exchange matches a vulnerable ICC path,

SEALANT requires the end-user to either block or allow

the exchange in order to secure her device. To assess how

challenging such choices are for end-users, we conducted a

user study and a survey, guided by two hypotheses:

• H1: The intent-exchange control choices SEALANT re-

quires an end-user to make are not more difficult than the

choices required of end-users by “stock” Android.

318319

TABLE V: Difficulty, Confidence, and Response Time per Dialog Type

Dialog
Type

User Study Survey
Difficulty Confidence Response Time Difficulty Confidence

n x̄ s n x̄ s n x̄ M s n x̄ s n x̄ s
Type 1 34 5.26 1.62 34 5.65 0.95 34 6.99 4.06 8.29 155 4.14 1.29 155 4.16 1.30

Type 2 34 4.68 1.70 34 5.35 1.20 34 12.32 9.92 7.92 155 4.29 1.25 155 4.15 1.33

Type 3 34 4.79 1.68 34 5.56 1.02 34 9.02 6.51 8.58 155 4.65 1.38 155 4.35 1.36

Type 4 34 4.97 1.40 34 5.50 1.21 34 6.24 5.10 4.32 155 4.35 1.33 155 4.17 1.26

Type 1-3 102 4.91 1.67 102 5.52 1.06 102 9.44 7.24 8.53 465 4.36 1.32 465 4.22 1.33

n = num participants. x̄ = mean. M = median. s = std deviation. Difficulty and confidence values are on 7-point Likert scales (1 = very difficult, 7 = very easy; 1
= not confident at all, 7 = fully confident). Response time values are in seconds. The Type 1-3 row presents merged data from Type 1 through Type 3 rows.

• H2: A non-expert user can make intent-exchange control

choices that prevent an inter-app attack most of the time.

1) Experimental Setup: Our user study and survey were

designed to simulate situations in which users make choices

reflective of daily Android use (e.g., whether to install an app

after being shown the list of permissions it requires). Among

those choices, we also inserted choices required by SEALANT .

We asked the participants how difficult it was to make each

choice and how confident they were in making the choice.

The study included 34 participants, all graduate students at

USC, recruited via an e-mail list. The students’ majors spanned

engineering, communication, business, and social work. The

background survey showed that the participants had used a

mobile device for 59 months on average. 25 of the participants

(74%) reported Android as their primary mobile platform or

one they had experience using; 9 (26%) had not used Android

previously. 5 participants (14%) were aged between 18 and 24,

and the remaining 29 (86%) between 25 and 34.

We provided each user study participant a Google Nexus

7 with SEALANT pre-installed. They were presented with a

series of 20 common scenarios of four different types:

• Type 1 – A dialog asks the user whether to install an

app randomly selected from a credible source (Google

Play [20]) given the list of permissions the app requires.

• Type 2 – Same as Type 1, but with apps randomly

selected from an unreliable source.

• Type 3 – Intent matches multiple filters. Android displays

a dialog so the user can choose which app to use.

• Type 4 – A dialog prompts the end-user to make a choice

to block or allow a vulnerable inter-app access.

We used native-Android dialogs in 12 of the 20 scenarios

(Type 1-3), and in the remaining 8, we used SEALANT’s

customized dialog (Type 4) that presents (1) the sender/receiver

apps’ names, (2) the identified attack type, and (3) block, allow,

and always buttons among which the end-user must choose.

Half of the apps used in Type 4 scenarios were selected from

apps used in Type 1 and the other half from Type 2 scenarios.

During the study, we logged every interaction between a

participant and the device via logcat [45]. At the end of each

scenario, we asked participants to assess the scenario’s difficulty

and confidence in their choices, using a 7-point Likert scale.

In order to expand our dataset, we designed the online survey

in the same manner as the user study. We took screenshots of

what a user would see on her device as she went through the 20

scenarios, presented the screenshots to the survey respondents,

and prompted them to make the corresponding choices.

We sent out 200 survey requests and received 155 valid

responses (78%); 45 people did not respond or only partially

completed the survey. We sent requests to known e-mail lists

and contacts, and allowed them to self-select. The respondents

had used a mobile device for 51 months on average. 138

(89%) named Android as their primary mobile platform or had

experience using it. The survey covered a range of age groups

and occupations. 11 respondents (7%) were aged 18-24, 46

(30%) were 25-34, 37 (24%) were 35-44, 35 (22%) were 45-54,

and 26 (17%) were 55+. Respondents included 46 students

(30%), 27 medical doctors (17%), 20 business people (13%),

11 housewives (7%), 10 software engineers (7%), 9 professors

(6%), 5 retailers (3%), 5 lawyers (3%), and 22 others (14%).
More detailed information about the user study and survey

is available at http://softarch.usc.edu/sealant/.
2) Results: We evaluate hypotheses H1 and H2 using the

user study and survey data. For simplicity, we refer to the user

study participants and survey respondents as “participants”.
H1 – We compared (1) the difficulty perceived by partici-

pants in making their choices, (2) the confidence participants

had in their choices, and (3) the time it took to make choices

for native-Android dialogs (Type 1-3) and SEALANT dialogs

(Type 4). Table V presents the data we obtained. A comparison

of the mean degrees of difficulty showed that they did not differ

significantly between the two groups of scenarios (Student’s

t-test; p-value 0.928 for user study and 0.972 for survey). A

comparison of the mean degrees of confidence yielded the

same conclusion (Student’s t-test; p-value 0.853 for user study

and 0.646 for survey). Finally, the median response time was

significantly lower for Type 4 than for Type 1-3 scenarios (the

Mann-Whitney-Wilcoxon test; p-value 0.000). These results

support the conclusion that SEALANT’s intent-exchange control

choices are not more difficult than those of stock Android.
H2 – We measured the proportion of instances in which a

participant elected to block an intent exchange and prevent an

attack in a Type 4 scenario. In general, users may deliberately

allow vulnerable intent exchanges (e.g., a user trusts both

apps). However, in our study, unbeknownst to the users, we

only included paths actually leading to exploits, allowing us to

know the correct behavior. Recall that one half of the apps in the

Type 4 scenarios came from reliable and the other half from

unreliable sources. In the combined Type 1 (credible apps)

and Type 2 (unreliable apps) scenarios, participants chose to

cancel installation 51% of the time. That tendency, halting an

on-going activity to avoid security threats, was much higher

for Type 4 scenarios. The 34 user study participants chose

intent blocking 70% of the time, while 155 survey participants

319320

chose blocking 68% of the time. Participants were thus able

to make intent-exchange choices that did not lead to inter-app

attacks at a much higher rate than their “average” behavior.

E. Threats to Validity

Our user study participants were students. To address

any resulting bias, we additionally conducted the survey

whose respondents spanned a variety of ages and occupations.

The survey merely emulated a mobile environment, possibly

influencing the participants’ choices. As a mitigation, we

carefully described each scenario to provide the participants

with the context they would have had if they had used an

actual device. We also separately analyzed the user study

and survey results, and both support our conclusions. Lastly,

the participants elected to allow a fair portion (≈30%) of

the vulnerable ICCs in cases we designed blocking to be

the appropriate choice. While we consider the users’ choices

to block the rest ≈70% of ICCs that would otherwise have

remained uncaught without SEALANT as a positive result, this

indicates that improvements may be possible with regards to

how SEALANT presents the vulnerable ICCs to end-users.

VI. RELATED WORK

Approaches that target Android’s vulnerabilities use program

analysis, ICC analysis, and/or policy enforcement.

Program analysis is employed by several approaches [2],

[23], [32], [51]–[63]. ComDroid [2] categorizes vulnerabilities

in inter-app communication and detects vulnerabilities in

target apps via static analysis. FlowDroid [32] provides intra-

component taint-flow analysis. CHEX [12] leverages data-flow

analysis to discover component hijacking vulnerabilities. Unlike

SEALANT , these techniques mainly focus on individual apps.

ICC analysis is the focus of another body of research [4]–

[7], [14], [34], [64]–[74]. Epicc [14] and IC3 [34] statically

extract information from Android apps for ICC-aware analyses.

DidFail [5] uses taint-flow analysis to locate sensitive inter-app

data-flows, but targets only Activity components and neglects

intents’ data scheme. AmanDroid [6] identifies privacy leaks

by tracking components interactions, but has been shown to

work incorrectly on Content Provider components and certain

ICC methods. IccTA [4] is a taint-flow analysis targeting

privacy leaks. While instrumenting source code to resolve the

connections between components does improve its precision, it

does not target other types of inter-app attacks. COVERT [7]

introduces a compositional analysis of inter-app vulnerabilities,

especially against permission leakage. It does not target other

types of inter-app attacks or handle intents’ data scheme. These

approaches detect but do not protect against ICC vulnerabilities.

Policy enforcement in Android is explored via (1) app code

instrumentation [8], [17], [75]–[81], (2) Android framework

extension [9]–[11], [13], [54], [82]–[86], and (3) dynamic mem-

ory instrumentation [15], [87]. Aurasium [76] enforces arbitrary

policies by interposing code into the target app. DroidForce [8]

enforces custom data-centric policies by instrumenting an app’s

bytecode. While rewriting apps can be effective, incomplete

implementations of bytecode rewriting results in a number of

potential attacks [88]. Since repackaging assigns a different

signature to a target app, it can also no longer be updated by the

original issuer. Saint [9] extends Android to enable control of an

app’s behavior via app provider’s policies. XmanDroid [11] also

extends the monitoring mechanism of Android to prevent app-

level privilege escalation attacks based on permission-based

policies. ASM [89] provides an API that enables enforcement

of app-specific security requirements. End-users typically lack

expertise in devising policies and have to rely on general

policies written by experts. By contrast, SEALANT provides

finer-grain protection by automatically generating and enforcing

what amounts to target-specific policies for a set of apps.

DeepDroid [87] provides enterprise policy enforcement by

applying dynamic memory instrumentation (i.e., rooting) to

Android’s runtime environment. SEPAR [15] automatically

synthesizes security policies, which it also enforces through

dynamic memory instrumentation. Rooting may introduce

vulnerabilities and compatibility issues on custom ROM [18].

VII. CONCLUDING REMARKS

SEALANT is an integrated technique that monitors and

protects ICC paths through which Android inter-app attacks

can take place. SEALANT’s combination of static and dynamic

analysis improves upon existing techniques in automatically

identifying the vulnerable ICC paths between a set of apps,

monitoring each instance of ICC to detect potential attacks,

and empowering end-users to stop the attacks. Our evalua-

tion demonstrates SEALANT’s effectiveness, efficiency, accu-

racy, scalability, and usability. Notably, we have shown that

SEALANT outperforms existing alternatives in blocking inter-

app attacks and can be applied in real-world scenarios, with a

negligible performance overhead and a minor adoption barrier.

Several avenues of future work remain. Analyzer shares

two limitations of static-analysis tools it leverages (i.e., IC3,

COVERT, and FlowDroid). First, reflective calls are resolved

only when their arguments are string constants. To this end, we

will explore reflection analysis techniques [90]. Second, incom-

plete models of native methods and dynamically loaded code

can cause unsoundness in our results. This can be remedied

by leveraging additional sources of vulnerabilities [91] and

dynamic analysis techniques [54], [92]. Inter-app attacks can

also be launched via covert channels in the Android core system

components and via kernel-controlled channels (e.g., confused
deputy attacks over a local socket connection or collusion
attacks over the file system). We can counter such attacks

by combining our solution with kernel-level solutions (e.g,

SELinux [93] and FlaskDroid [10]). Another direction for our

work is to feed end-users’ choices into a statistical model, to

provide more specific guidance. Eventually, we can incorporate

these techniques in designing applications [94], [95].

VIII. ACKNOWLEDGMENTS

We appreciate the reviewers’ helpful comments and the

contribution of Ruhollah Shemirani in evaluating an earlier

prototype of SEALANT. This work is supported by the U.S.

National Science Foundation under award number 1618231.

320321

REFERENCES

[1] “2012 Norton Cybercrime Report,” http://www.norton.com/
2012cybercrimereport, Symantec Corporation, 2012.

[2] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing Inter-
Application Communication in Android,” in Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services.

[3] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi,
“XManDroid: A New Android Evolution to Mitigate Privilege Escalation
Attacks,” Technische Universität Darmstadt, Tech. Rep. TR-2011-04,
2011.

[4] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. Mcdaniel, “IccTA: Detecting
Inter-Component Privacy Leaks in Android App,” in Proceedings of the
37th International Conference on Software Engineering, 2015.

[5] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android Taint
Flow Analysis for App Sets,” in Proceedings of the 3rd International
Workshop on the State of the Art in Java Program Analysis, 2014.

[6] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A Precise and General
Inter-component Data Flow Analysis Framework for Security Vetting
of Android Apps,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, 2014.

[7] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek, “COVERT: Com-
positional Analysis of Android Inter-App Permission Leakage,” IEEE
Transactions on Software Engineering, vol. 41, no. 9, pp. 866–886, 2015.

[8] S. Rasthofer, S. Arzt, E. Lovat, and E. Bodden, “DroidForce: Enforcing
Complex, Data-centric, System-wide Policies in Android,” in Proceedings
of the 9th International Conference on Availability, Reliability, and
Security (ARES), 2014.

[9] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically
Rich Application-Centric Security in Android,” in Proceedings of the
Annual Computer Security Applications Conference (ACSAC), 2009.

[10] S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and Fine-Grained
Mandatory Access Control on Android for Diverse Security and Privacy
Policies,” in Proceedings of the 22nd USENIX Conference on Security.

[11] S. Bugiel, L. Davi, R. Dmitrienko, and T. Fischer, “Towards Taming
Privilege-Escalation Attacks on Android,” in NDSS, 2012.

[12] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically Vetting
Android Apps for Component Hijacking Vulnerabilities,” in Proceedings
of the Conference on Computer and Communications Security, 2012.

[13] M. Dietz, S. Shekhar, D. S. Wallach, Y. Pisetsky, and A. Shu, “QUIRE:
Lightweight Provenance for Smart Phone Operating Systems,” in
Proceedings of the 20th USENIX Conference on Security, 2011.

[14] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. Le Traon, “Effective Inter-component Communication Mapping in
Android with Epicc: An Essential Step Towards Holistic Security
Analysis,” in Proceedings of the 22nd USENIX Conference on Security.

[15] H. Bagheri, A. Sadeghi, R. Jabbarvand, and S. Malek, “Practical, Formal
Synthesis and Automatic Enforcement of Security Policies for Android,”
in Proceedings of the 46th IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2016.

[16] S. Rasthofer, S. Arzt, and E. Bodden, “A Machine-Learning Approach
for Classifying and Categorizing Android Sources and Sinks,” in NDSS,
2014.

[17] H. Bagheri, A. Sadeghi, R. Jabbarvand, and S. Malek, “Automated
Dynamic Enforcement of Synthesized Security Policies in Android,”
George Mason University, Tech. Rep. GMU-CS-TR-2015-5, 2015.

[18] “Is Rooting Your Phone Safe? The Security Risks of Rooting De-
vices,” https://insights.samsung.com/2015/10/12/is-rooting-your-phone-
safe-the-security-risks-of-rooting-devices, Samsung Electronics America.

[19] “DroidBench: A micro-benchmark suite to assess the stability of
taint-analysis tools for Android,” https://github.com/secure-software-
engineering/DroidBench, 2015.

[20] “Google Play,” http://play.google.com/store/apps, Google, 2015.

[21] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization
and Evolution,” in Proceedings of the 33rd IEEE Symposium on Security
and Privacy (SP), 2012.

[22] J. Garcia, D. Popescu, G. Safi, W. G. J. Halfond, and N. Medvidovic,
“Identifying Message Flow in Distributed Event-Based Systems,” in
Proceedings of the 9th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), 2013.

[23] G. Safi, A. Shahbazian, W. G. Halfond, and N. Medvidovic, “Detecting
Event Anomalies in Event-Based Systems,” in Proceedings of the 10th

Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering.

[24] A. Belokosztolszki, D. M. Eyers, P. R. Pietzuch, J. Bacon, and K. Moody,
“Role-Based Access Control for Publish/Subscribe Middleware Architec-
tures,” in Proceedings of the 2nd International Workshop on Distributed
Event-Based Systems (DEBS), 2003.

[25] B. Shand, P. Pietzuch, I. Papagiannis, K. Moody, M. Migliavacca, D. M.
Eyers, and J. Bacon, Reasoning in Event-Based Distributed Systems, 2011,
ch. Security Policy and Information Sharing in Distributed Event-Based
Systems.

[26] L. I. W. Pesonen, D. M. Eyers, and J. Bacon, “Encryption-Enforced
Access Control in Dynamic Multi-Domain Publish/Subscribe Networks,”
in Proceedings of the Inaugural International Conference on Distributed
Event-based Systems (DEBS), 2007.

[27] M. Srivatsa, L. Liu, and A. Iyengar, “EventGuard: A System Architec-
ture for Securing Publish-Subscribe Networks,” ACM Transactions on
Computer Systems (TOCS), vol. 29, no. 4, pp. 10:1–10:40, 2011.

[28] L. Fiege, M. Mezini, G. Mühl, and A. P. Buchmann, “Engineering
Event-Based Systems with Scopes,” in Proceedings of the 16th European
Conference on Object-Oriented Programming (ECOOP), 2002.

[29] S. J. Templeton and K. E. Levitt, “Detecting Spoofed Packets,” in DARPA
Information Survivability Conference and Exposition Proceedings, 2003.

[30] “android.app | Android Developers.” [Online]. Available: http:
//developer.android.com/reference/android/app/package-summary.html

[31] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing
the Android Permission Specification,” in Proceedings of the 19th ACM
Conference on Computer and Communications Security (CCS), 2012.

[32] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise Context, Flow, Field,
Object-Sensitive and Lifecycle-Aware Taint Analysis for Android Apps,”
in Proceedings of the 35th annual ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI), 2014.

[33] “Intents and Intent Filters | Android Developers.” [Online]. Available:
https://developer.android.com/guide/components/intents-filters.html

[34] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel, “Composite
Constant Propagation: Application to Android Inter-Component Commu-
nication Analysis,” in Proceedings of the 37th International Conference
on Software Engineering (ICSE), 2015.

[35] “Android Open Source Project,” https://source.android.com, 2016.
[36] “Dashboards | Android Developers,” https://developer.android.com/about/

dashboards, 2016.
[37] “Run Apps on the Android Emulator | Android Studio,” https://developer.

android.com/studio/run/emulator.html, 2016.
[38] “Android Debug Bridge,” http://developer.android.com/tools/help/adb.

html, 2016.
[39] “Running Builds–Booting into Fastboot Mode.” [Online]. Available: https:

//source.android.com/source/running.html#booting-into-fastboot-mode
[40] “IccTA,” http://sites.google.com/site/icctawebpage, 2016.
[41] “F-Droid – Free and Open Source Android App Repository,” https:

//f-droid.org, 2016.
[42] “Bazaar,” http://cafebazaar.ir, 2016.
[43] “apps-for-android — Google Code Archive,” https://code.google.com/

archive/p/apps-for-android/, 2016.
[44] “Sourcecodester.com,” http://www.sourcecodester.com/android, 2016.
[45] “logcat Command-line Tool | Android Studio,” https://developer.android.

com/studio/command-line/logcat.html, 2015.
[46] “So Many Apps, So Much Time For Entertainment,”

http://www.nielsen.com/us/en/insights/news/2015/so-many-apps-
so-much-more-time-for-entertainment.html, 2015.

[47] “monkeyrunner | Android Studio,” https://developer.android.com/studio/
test/monkeyrunner, 2016.

[48] “Download APK Android Apps and Games,” http://www.appsapk.com,
2016.

[49] “UI/Application Exerciser Monkey | Android Studio,” http://developer.
android.com/tools/help/monkey.html, 2016.

[50] “Keeping Your App Responsive | Android Developers,” http://developer.
android.com/training/articles/perf-anr.html, 2016.

[51] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “SCanDroid: Automated
Security Certification of Android Applications,” Dept. of Computer
Science, University of Maryland, Tech. Rep., 2009.

[52] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “AndroidLeaks:
Automatically Detecting Potential Privacy Leaks in Android Applications
on a Large Scale,” in Proceedings of the 5th International Conference
on Trust and Trustworthy Computing (TRUST), 2012.

321322

[53] Y. Zhou and X. Jiang, “Detecting Passive Content Leaks and Pollution
in Android Applications,” in NDSS, 2013.

[54] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth, “TaintDroid: An Information-flow Tracking System for
Realtime Privacy Monitoring on Smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation.

[55] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic Detection of
Capability Leaks in Stock Android Smartphones,” in NDSS, 2012.

[56] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard, “Information Flow Analysis of Android Applications in
DroidSafe,” in NDSS, 2015.

[57] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang, “AppIntent:
Analyzing Sensitive Data Transmission in Android for Privacy Leakage
Detection,” in Proceedings of the ACM SIGSAC Conference on Computer
Communications Security (CCS), 2013.

[58] P. P. Chan, L. C. Hui, and S. M. Yiu, “DroidChecker: Analyzing Android
Applications for Capability Leak,” in Proceedings of the 5th Conference
on Security and Privacy in Wireless and Mobile Networks, 2012.

[59] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
Permissions Demystified,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security (CCS), 2011.

[60] J. Kim, Y. Yoon, K. Yi, and J. Shin, “ScanDal: Static Analyzer for
Detecting Privacy Leaks in Android Applications,” in Proceedings of the
Mobile Security Technologies (MoST), 2012.

[61] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev, “Static Control-
Flow Analysis of User-driven Callbacks in Android Applications,”
in Proceedings of the 37th International Conference on Software
Engineering (ICSE), 2015.

[62] C. Mann and A. Starostin, “A Framework for Static Detection of Privacy
Leaks in Android Applications,” in Proceedings of the 27th Symposium
on Applied Computing (SAC), 2012.

[63] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “AsDroid:
Detecting Stealthy Behaviors in Android Applications by User Interface
and Program Behavior Contradiction,” in Proceedings of the 36th
International Conference on Software Engineering (ICSE), 2014.

[64] L. Li, A. Bartel, J. Klein, and Y. L. Traon, “Automatically Exploiting
Potential Component Leaks in Android Applications,” in Proceedings
of the 13th International Conference on Trust, Security and Privacy in
Computing and Communications (TRUSTCOM), 2014.

[65] T. Ravitch, E. R. Creswick, A. Tomb, A. Foltzer, T. Elliott, and L. Casburn,
“Multi-App Security Analysis with FUSE: Statically Detecting Android
App Collusion,” in Proceedings of the 4th Program Protection and
Reverse Engineering Workshop (PPREW), 2014.

[66] F. Shen, N. Vishnubhotla, C. Todarka, M. Arora, B. Dhandapani, E. J.
Lehner, S. Y. Ko, and L. Ziarek, “Information Flows As a Permission
Mechanism,” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering (ASE), 2014.

[67] K. Choi and B.-M. Chang, “A Type and Effect System for Activation
Flow of Components in Android Programs,” Information Processing
Letters, vol. 114, no. 11, pp. 620–627, November 2014.

[68] S. Bartsch, B. Berger, M. Bunke, and K. Sohr, “The Transitivity-of-Trust
Problem in Android Application Interaction,” in Proceedings of the 8th
International Conference on Availability, Reliability and Security, 2013.

[69] Y. Zhongyang, Z. Xin, B. Mao, and L. Xie, “DroidAlarm: An All-
Sided Static Analysis Tool for Android Privilege-Escalation Malware,”
in Proceedings of the 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security (ASIA CCS), 2013.

[70] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. Roesner,
K. Koscher, P. B. Barros, R. Bhoraskar, S. Han, P. Vines, and E. X. Wu,
“Collaborative Verification of Information Flow for a High-Assurance
App Store,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2014.

[71] J. Wu, T. Cui, T. Ban, S. Guo, and L. Cui, “PaddyFrog: Systematically
Detecting Confused Deputy Vulnerability in Android Applications,”
Security and Communication Network, vol. 8, no. 13, September 2015.

[72] D. Octeau, S. Jha, M. Dering, P. McDaniel, A. Bartel, L. Li, J. Klein, and
Y. L. Traon, “Combining Static Analysis with Probabilistic Models to
Enable Market-Scale Android Inter-Component Analysis,” in Proceedings
of the 43rd Symposium on Principles of Programming Languages, 2016.

[73] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The Impact of Vendor
Customizations on Android Security,” in Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security, 2013.

[74] K. O. Elish, D. Yao, and B. G. Ryder, “On the Need of Precise Inter-
App ICC Classification for Detecting Android Malware Collusions,”

in Proceedings of IEEE Mobile Security Technologies (MoST), in
conjunction with the IEEE Symposium on Security and Privacy, 2015.

[75] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von Styp-
Rekowsky, “AppGuard: Enforcing User Requirements on Android Apps,”
in Proceedings of the 19th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), 2013.

[76] R. Xu, H. Saïdi, and R. Anderson, “Aurasium: Practical Policy Enforce-
ment for Android Applications,” in Proceedings of the 21st USENIX
Conference on Security Symposium, 2012.

[77] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen, “I-ARM-Droid:
A Rewriting Framework for In-App Reference Monitors for Android
Applications,” in Proceedings of the Mobile Security Technologies, 2012.

[78] B. Davis and H. Chen, “RetroSkeleton: Retrofitting Android Apps,” in
Proceeding of the 11th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2013.

[79] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. Millstein, “Dr. Android and Mr. Hide: Fine-grained Permissions
in Android Applications,” in Proceedings of the 2nd ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, 2012.

[80] K. Z. Chen, N. Johnson, S. Dai, K. Macnamara, T. Magrino, E. Wu,
M. Rinard, and D. Song, “Contextual Policy Enforcement in Android
Applications with Permission Event Graphs,” in NDSS, 2013.

[81] M. Zhang and H. Yin, “Appsealer: Automatic Generation of Vulnerability-
Specific Patches for Preventing Component Hijacking Attacks in Android
Applications,” in NDSS, 2014.

[82] Z. Zhao and F. C. Colon Osono, ““TrustDroidTM”: Preventing the Use of
Smartphones for Information Leaking in Corporate Networks Through
the Used of Static Analysis Taint Tracking,” in Proceedings of the 7th
International Conference on Malicious and Unwanted Software, 2012.

[83] W. Enck, M. Ongtang, and P. McDaniel, “On Lightweight Mobile Phone
Application Certification,” in Proceedings of the 16th ACM Conference
on Computer and Communications Security (CCS), 2009.

[84] D. Schreckling, J. Posegga, J. Köstler, and M. Schaff, “Kynoid: Real-Time
Enforcement of Fine-Grained, User-Defined, and Data-Centric Security
Policies for Android,” in Proceedings of the 6th IFIP International
Conference on Information Security Theory and Practice: Security,
Privacy and Trust in Computing Systems and Ambient Intelligent, 2012.

[85] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permission
re-delegation: Attacks and defenses,” in Proceedings of the 20th USENIX
Conference on Security (SEC), 2011.

[86] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
Aren’t the Droids You’re Looking for: Retrofitting Android to Protect
Data from Imperious Applications,” in Proceedings of the 18th ACM
Conference on Computer and Communications Security, 2011.

[87] X. Wang, K. Sun, Y. Wang, and J. Jing, “DeepDroid: Dynamically
Enforcing Enterprise Policy on Android Devices,” in NDSS, 2015.

[88] H. Hao, V. Singh, and W. Du, “On the Effectiveness of API-Level Access
Control Using Bytecode Rewriting in Android,” in Proceedings of the
8th Symposium on Information, Computer and Communications Security.

[89] S. Heuser, A. Nadkarni, W. Enck, and A.-R. Sadeghi, “ASM: A
Programmable Interface for Extending Android Security,” in Proceedings
of the 23rd USENIX Conference on Security Symposium, 2014.

[90] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein, “DroidRA: Taming
Reflection to Support Whole-Program Analysis of Android Apps,” in
Proceedings of the 25th International Symposium on Software Testing
and Analysis (ISSTA), 2016.

[91] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, You, Get Off of My
Market: Detecting Malicious Apps in Official and Alternative Android
Markets,” in NDSS, 2012.

[92] Y. K. Lee, J. Bang, J. Garcia, and N. Medvidovic, “ViVA: A Visualization
and Analysis Tool for Distributed Event-based Systems,” in Proceedings
of the 36th International Conference on Software Engineering, 2014.

[93] A. Shabtai, Y. Fledel, and Y. Elovici, “Securing Android-Powered Mobile
Devices Using SELinux,” IEEE Security & Privacy, vol. 8, no. 3, 2010.

[94] A. Shahbazian, G. Edwards, and N. Medvidovic, “An End-to-End Domain
Specific Modeling and Analysis Platform,” in Proceedings of the 8th
International Workshop on Modeling in Software Engineering, 2016.

[95] M. Langhammer, A. Shahbazian, N. Medvidovic, and R. H. Reussner,
“Automated Extraction of Rich Software Models from Limited System
Information,” in Proceedings of the 13th Working IEEE/IFIP Conference
on Software Architecture (WICSA), 2016.

322323

