
How Software Architects Collaborate: Insights from
Collaborative Software Design in Practice

Jae Young Bang, Ivo Krka, and Nenad Medvidovic
University of Southern California

941 Bloom Walk, Los Angeles, California, USA
{jaeyounb, krka, neno}@usc.edu

Naveen Kulkarni and Srinivas Padmanabhuni
Infosys Limited

#44, Electronics City, Hosur Road, Bangalore, India
{Naveen Kulkarni, Srinivas P}@infosys.com

Abstract—The increasingly complex software systems are de-
veloped by globally distributed engineering teams consisting of a
number of members who collaborate to gather the requirements,
as well as design, implement, and test the system. Unlike other
development activities, collaborative software design has not yet
been studied extensively, and thus it is not fully understood how it
is conducted in practice. We have commenced a series of studies
to address this. As the first step, we have interviewed architects at
a global software solutions provider to observe how collaborative
software design works in practice. In this paper, we report the
observations and insights we gained from the interviews related
to (1) the various roles of software architects in collaborative
software design, (2) the project-specific networks of software
architects, (3) the impacts of geographic distribution, and (4)
the collaboration cost drivers. We also discuss how we are using
these insights to shape up our subsequent research.

I. INTRODUCTION

The complexity and size of modern software projects dic-
tates involvement of multiple software architects during a
system’s design. These software architects collaborate to make
design decisions and produce design artifacts such as architec-
tural documentation. To effectively support these collaborative
design practices, it is necessary to understand them intimately.

We are by no means the first to recognize the need to
understand collaborative software design (e.g. [1]). However,
the issues from the collaboration persist even today while its
sophistication has grown significantly.

Researchers have studied a number of topics related to
collaborative software design, covering (1) general issues
in collaborative software engineering [2]–[9], (2) design
model merging and inconsistency checking [10]–[12], (3)
design model version control [13]–[16], (4) workspace aware-
ness [17]–[19], and (5) recently introduced collaborative mod-
eling tools [20]–[22] including our own [23].

While potentially useful, it is not clear whether the existing
approaches are readily applicable to collaborative design in
industrial practice. This is due to the current lack of docu-
mented information about how collaborative software design
is conducted in practice. Therefore, it is difficult to assess
the existing, frequently general-purpose, approaches and their
underlying assumptions. The current literature does not fully
consider the following attributes of collaborative software
design: (1) the different types of stakeholders who are involved
in the process of making design decisions, (2) how those

stakeholders are distributed and how they are connected to
one another, (3) the types of artifacts that are created and
exchanged, and (4) how collaborative software design differs
from the other collaborative software development activities
(e.g., implementation). Recent research efforts shed some light
on these issues. Unphon et al. reported how software architects
manage large software architecture and exchange architectural
changes [24], and Figueiredo et al. further explored different
roles of software architects [25]. Nevertheless, the collabora-
tive aspects of software design has not been fully discovered.

To have deeper understanding of collaborative software
design practices, we have conducted a set of 18 interviews
with software architects from a large global software solutions
provider. This, in turn, enabled us to explore and clearly define
research problems that are specific to the domain of collabora-
tive software design. Furthermore, we have conducted two ad-
ditional cross-validation interviews with architects at different
software companies for the purpose of obtaining preliminary
indication whether our findings from the 18 interviews were
observable from other organizations as well.

In this paper, we describe the insights we gained from the
interviews. The main insights were related to:

1) Different roles and collaboration patterns of software
architects and other stakeholders. For example, there
are roles of software architects that are not properly
differentiated and thus are supported inadequately by
existing approaches.

2) Distinct topologies of software architects. For example,
we discovered that architects responsible for detailed
design may need to collaborate more than the others.

3) Geographic distribution of the software architects. For
example, the interviewees suggested that geographic dis-
tribution has a limited impact on collaboration.

4) Factors that drive costs in collaborative software design.
For example, the architects were aware that the way de-
sign tasks are allocated impacts the subsequently required
collaboration.

This paper focuses on the first of a series of planned studies
targeting collaborative software design. We report on the
preliminary interviews targeted at understanding the current
practices. In turn, this work will serve as the foundation for
(1) a pilot survey to evaluate the research questions obtained in

978-1-4673-6290-0/13 c© 2013 IEEE CHASE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

41



the process, and (2) a large-scale survey for the full evaluation
of the research questions. Although based on a preliminary set
of interviews, we posit that our insights and their illustration
through the examples add to the current body of knowledge,
and should direct future research efforts.

The rest of the paper is structured in the following manner.
In Section II, we describe the research setup. In Section III, we
describe and summarize the interviews as well as the insights
we gained. We describe the cross-validation interviews we
conducted in Section IV. In Section V, we discuss the threats
to validity. We conclude the paper in Section VI.

II. RESEARCH SETUP

A. Interview Questions

The ultimate goal of this research is to improve the under-
standing of collaborative software design in industrial practice.
We had interviews to identify the stakeholders involved in
collaborative design, to analyze how collaboration among
those stakeholders occurs, and to identify the sources and
extent of the costs incurred by collaborative design. The
interviews were hour-long and free-form with topics including
but not limited to:

• What kind of project did you participate most recently?
• What is the structure of your team (authority, size,

location, etc.)? Who are the stakeholders involved in
collaborative design? Draw a diagram of the network of
the stakeholders.

• What is your role in the team? What are the roles of the
other stakeholders?

• How is each design task formed and assigned? What are
the criteria used for design task assignment?

• What artifacts are created and how are they exchanged?
• In which situations do you need to collaborate?
• What communication media do you use to exchange

design decisions or knowledge, especially with people in
remote locations?

• What are the main factors that affect collaborative design
cost?

• What is the overall collaborative software design process
in your current project?

Based on the answers to these general preliminary questions,
we followed up by further exploring the most important or
unclear aspects of the interviewees’ responses.

B. Target Organization

We conducted the interviews at a very large, global software
solutions company with long history of developing services for
clients world-wide. They provide services in various domains
such as finance, energy, telecommunication, and aerospace.
Their software projects are of different types such as systems
integration, product development, and maintenance projects,
and of different sizes ranging from small ones for a few months
to large ones that take multiple years by a large group of
people. This company is mature (CMMI level 5, 7 billion USD
revenue, 155K employees in 2012).

C. Interview Execution

The first and second authors (PhD students) spent 10 weeks
at the primary target to interview 18 highly experienced soft-
ware architects who have participated in commercial software
development projects for over 12 years on average and more
than 9 years at the target organization. The fourth author (a
researcher at the target organization) also participated in the
interview sessions. We randomly selected software architects
from different projects conducted in various domains as the
interviewees. By selecting interviewees from diverse back-
grounds, we tried to ensure that we gain general rather than
domain-specific insights. For similar reasons, we aimed to
select interviewees of different backgrounds in terms of the
types of projects on which they have worked (e.g., greenfield
vs. brownfield, or system integration vs. product development
vs. customization vs. maintenance). About two thirds of the
interviews were done face-to-face, and the rest were done over
conference calls. All interview responses were noted, and 12
of those were also voice-recorded. 15 interviewees were senior
architects while 3 had junior architect roles. 14 interviewees
were involved in outsourcing projects while 4 were involved
in in-house projects.

III. OBSERVATIONS AND INSIGHTS

In this section, we summarize the most important insights
supported by the interview responses. We also discuss the
practical impact of our findings. The names, titles, and ex-
amples have been modified from those used at the target
organization to be suitable for public disclosure.

It is worth noting that this work is the preliminary step of
a larger study and thus the purpose of this work is to form
research questions rather than to prove them. We discuss the
limitations of our observations and insights that are drawn
from the interviews as part of the threats to validity of this
work (Section V).

We outline the different architects’ roles in Section III-A.
In Section III-B, we explain the common software architect
topologies and how different types of software projects alter
these topologies. We discuss the perceived impact of geo-
graphic distribution in the context of collaborative software
design in Section III-C. In Section III-D, we list the drivers
of collaboration costs as elicited from the interviewees.

A. Various Roles of Software Architects

Lane et al., in their previous work [6], identified four roles of
global collaborative software engineering: Business Analyst,
Designer, Developer, and Development Support.

Of these roles, the stakeholders playing the general Designer
role (which we refer to as “software architect” in our work)
are supposed to collaboratively create a system’s design. One
observation from our interviews was that multiple software
architects participating in collaborative design play different
roles despite having similar job titles. Furthermore, in certain
situations the development personnel can assume some design
responsibilities. This observation aligns with a recent report

42



by Figueiredo et al. that software development organizations
adapt roles to their reality [25].

The job titles of the software architects at the target organi-
zation were dependent on their experience. In this paper, we
will call an architect with relatively more experience a senior
architect and the less experienced architect a junior architect.

The senior architects are primarily responsible for making
high-level design decisions. Each senior architect in a software
design project makes decisions related to determining the
modules, devising a data-flow architecture, deciding on COTS
usage, system integration, product delivery, and so on. In
a collaborative effort with multiple senior architects, each
architect becomes responsible for only a subset of these
decisions. Hence, each senior architect has a relatively tightly
scoped role as opposed to general high-level decision making.

The junior architects are primarily responsible for detailed
design and modeling. In the interviews, we observed that each
junior architect’s role is further refined: a junior architect is
assigned to projects and design tasks based on her/his technical
background (e.g., Java, databases, web technologies).

Our interviews also suggested that, depending on the project
specifics such as the size of the project and the structure of
the design team, a senior developer who leads a team of
developers can assume a subset of a junior architect’s role
and participate in making detailed-level design decisions. The
junior architects and the senior developers do not assume the
responsibilities of senior architects.

“We would have the senior developers on the call,
but more on a listening mode, so that they are getting
the context and starting to see the big picture rather
than asking questions and doubts.”

In other words, the senior developers only observe the
collaborative high-level design sessions in order to get familiar
with the system and its requirements.

Impact. Identifying the different roles of software architects
may open new research avenues in the context of collaborative
design. Specifically, particular roles could have more or less
prominent collaboration issues. Focusing on roles that have
greater collaboration challenges is more valuable [6]. For
example, an architect responsible for devising a data-flow
architecture may need to communicate with other architects
more frequently than an architect who is deciding on an
appropriate COTS.

B. Software Architect Topologies

In this subsection, we identify the common ways multiple
architects work together during a software system’s design.
Our descriptions are based on the four topologies of collabo-
ration paths between software architects and other stakeholders
that are directly drawn by the interviewees. These topologies
are depicted in Figures 1–4.

This topology-based representation allows us to clearly
capture with whom the different software architects directly
collaborate in their respective responsibilities. The distinctions
between the topologies also provide insights into how collab-
orative design differs for different types of projects as well as

Offshore (target organization location)

On-site (client location)

Business 
Analyst

Business 
Analyst Architect

Lead/Senior 
Architect

Senior 
Architect

Senior 
Architect

Development 
Team

Senior 
Developer

Development 
Team

Senior 
Developer

Development 
Team

Senior 
Developer

Fig. 1. Topology for Mid-Sized Projects

how the different stakeholders are geographically distributed.
Though common, these topologies were not standardized and
varied greatly depending on the available resources and project
specifics.

To help understand the topologies, we will first define some
terminology. We refer to the entire delivered software product
as the system, which is then decomposed into subsystems, and,
in turn, into one or more modules. The system architecture
consists of the high-level design decisions. For example, if a
web portal is being designed, the high-level design decisions
would include the definition of the services provided by the
portal, the definition of elements shared by these services (e.g.,
a back-end database), and how those components are supposed
to interconnect. Each service and shared component would
then be a subsystem of the web portal system. The module
architecture consists of detailed design decisions such as
creating a class diagram defining implementation-level objects
that will be used to implement a module in a subsystem.

Figure 1 depicts the most common topology of software
architects at the target organization that is used for mid-sized
projects. Gray ovals represent stakeholders from third-party
organizations that contracted the system, while white ovals
represent the stakeholders who belong to the development
organization. The arrows represent the channels of direct col-
laboration. In this topology, the lead senior architect initially
receives the set of requirements from the business analysts.
The lead architect then proceeds to come up with the high-level
system design together with other senior architects. When the
system’s high-level design is complete, the identified modules
are assigned to the senior developers for detailed design. The
conventional software engineering wisdom suggests that the
senior architects are supposed to be actively involved in other
phases of a project after the design is completed. This view
was reinforced by some of the interviewees.

“Solution architect (senior architect) initially puts
more effort in the initial stage until the solution
architecture is complete, and plays the reviewer role
in later stages.”

43



Offshore (target organization location)

On-site (client location)

Senior 
Architect

Lead/Senior 
Architect

Senior 
Architect

Junior 
Architect

Junior 
Architect

Junior 
Architect

Dev. Team

Senior 
Developer

Senior 
Architect

Business 
Analyst

Business 
Analyst Architect

Dev. Team

Senior 
Developer

Dev. Team

Senior 
Developer

Dev. Team

Senior 
Developer

Dev. Team

Senior 
Developer

Fig. 2. Topology for Large-Scale Projects

This statement may suggests reduced but sizable role in
later phases. Somewhat surprisingly, however, we found that
senior architects, who have the most end-to-end knowledge
about the system requirements and the overall design, typically
have very limited participation in the detailed design. At this
stage, their involvement in the project amounts to propagating
requirement changes and helping to resolve major inconsis-
tencies or conflicts between modules. In further contrast to
conventional wisdom, the role of software architects after the
design is complete was vividly described in another response:

“Architects make sure the development is following
the architecture looking at the final code, (but) in
the ideal world.”

The interview responses suggested that larger-scale devel-
opment projects at the target organization frequently utilize
the topology depicted in Figure 2. In this topology, there is an
additional senior architect between the lead architect and the
outside stakeholders. The role of this architect is to explicitly
manage the collaboration between the design team and the
customer-side stakeholders. Moreover, there is an additional
layer between the lead architect and the development teams
compared to the simpler topology shown in Figure 1. In the
lower layers that are responsible for detailed design, the junior
architects manage the design of the subsystems, while the
senior developers design the modules of the subsystems and
manage the subsequent development.

In case the systems are designed in explicit collaboration
with the client-side architects, the topologies change. Figure 3
depicts the topology for a software project where the lead
architect is from the client-side. The on-site senior architect
in this topology is acting as a liaison.

Offshore (target organization location)

On-site (client location)

Business 
Analyst

Lead 
Architect

Senior 
Architect

Development 
Team

Senior 
Developer

Development 
Team

Senior 
Developer

Senior 
Architect

Fig. 3. Topology with an External Lead Architect

Offshore (target organization location)

On-site (client location)

Domain 
Expert

Lead 
Architect

Domain 
Expert

Senior 
Architect

Junior 
Architect

Junior 
Architect

Development 
Team

Senior 
Developer

Fig. 4. Topology for High Criticality Projects

Figure 4 depicts the topology for a software project with
high criticality so that all architects are relocated to the client
location. The distinction of the topology in Figure 4 is that
it allows junior architects to directly communicate with the
client-side domain experts who have knowledge about the
system requirements and the domain.

While the above topologies have notable differences and
are employed on different types of projects, they share some
common traits. First, senior architects, other than the lead
architect, have specific duties such as creating data-flow ar-
chitecture and project-delivery schedule (recall Section III-A).
Second, junior architects and senior developers communicate
upstream only via the lead architect, with the exception of the
topology in Figure 4. For example, if a senior developer had
a query regarding the project delivery schedule, s/he would
first raise an issue with the lead architect who would in
turn communicate with the senior architect responsible for
product delivery. Lastly, the geographic distribution of the
architects can vary. Lead architects can change locations across

44



the border between on-site and offshore. Furthermore, during
preliminary design, the senior architects typically gather at the
same location for intensive collaborative design; we elaborate
on the impact of geographic distribution in Section III-C.

We also found that different types of software projects may
change the way collaboration occurs. The above topologies
were for IT service projects. In case of a product development
project at the target organization, the topology would be
largely different. One interviewee who was a senior architect
of a product development team said that the way his team
members collaborate was more ad-hoc, and the overall devel-
opment process of choice was primarily agile.

Impact. Improved understanding of architect topologies
may affect the agenda of collaborative design research. Ac-
cording to conventional software engineering wisdom, we
see the critical importance of collaboration between senior
architects due to the great impact of the high-level design
decisions made by them. However, we hypothesize that major
opportunities for research on collaborative design may actually
reside at the lower levels of the topologies. The reason for this
is that collaboration at the higher level is often immediate, fre-
quently in-person, and involves experienced stakeholders who
work on a manageable number of high-level design decisions.
By contrast, the junior architects and senior developers are
less experienced, have a larger number of tasks, and need
to handle a plethora of low-level details and dependencies.
This leads to a larger number of potential errors, conflicts,
and misunderstandings that may require more voluminous
collaboration. New and better methods, techniques, and tools
are likely to be needed to facilitate that collaboration.

C. Geographic Distribution and Its Impacts

Geographic distribution has been seen as one of the most
important challenges in global software engineering [26].
Our interview responses corroborated that knowledge sharing
and context transfer between distributed software architects
were non-trivial. However, surprisingly, the responses also
suggested that geographic distribution is not as prominent of
a challenge as expected in case of software design.

The reasons for this are the two remedies the target organi-
zation applied: (1) relocation of some architects to minimize
the negative impacts of the geographic distribution and (2)
extensive effort in high-level design up front that reduces the
amount of collaboration required for detailed design.

In the context of the four architect topologies from Sec-
tion III-B, the architect relocation primarily happens at the
upper levels of the topologies. By moving senior architects to
the client location early in the software project, it is possible to
more actively gather and clarify requirements as well as come
up with an appropriate high-level architecture, which can be
immediately explained to the client.

“Communication and collaboration have to happen
frequently especially heavily in the initial stage of
the project. The first 1/3 of the time is put into the
frequent meetings.”

In the scenario of Figure 1, the lead architect could be
relocated to the client location in the early phase of software
design to facilitate the intensive collaboration, and then moved
back to the target organization location to be collocated with
the senior developers at a later time.

Moreover, several architects may be relocated if the crit-
icality of the project is higher, as depicted in Figure 4.
The feasibility of relocating the architects stems from their
relatively low number in comparison to developers, while
providing additional benefits in terms of direct interaction with
the clients.

“Architects sometimes need to travel to be collo-
cated when the complexity of the current task is very
high.”

Contrary to the senior architects, junior architects and the
senior developers who lead the development teams are likelier
to be geographically distributed. The interviewees suggested
that the collaboration cost created by the distribution between
these stakeholders was perceived as not as high due to the
modularized design tasks that require limited synchronization.

“Spending more effort on architecture documenta-
tion to the very much detailed story lines and to the
level of a single transaction would prevent the need
for large amount of effort in later stages, and this is
what is happening today.”

We hypothesize that this perception might be partly due
to the fact that the stakeholders are distributed across only
a few time zones (client and target organization’s location).
Most of the target organization’s personnel are stationed in
the same country that spans only one time zone. Hence, the
junior architects are able to “just make a phone call” whenever
necessary.

Impact. Most of the senior architect interviewees did not
see geographic distribution as problematic, which does not
align with the conventional wisdom of software engineering.
Although further study is required, we suspect their responses
might be influenced by their collocation, which eliminated
the distribution in the first place. In addition, the interviewees
with junior architect roles were typically situated in different
cities within a single time zone. In that sense, while the
organization is indeed a global provider of software solutions,
our data indicates that its software development strategy is
much more localized. For these reasons, we posit that future
research should be conducted to determine the full effects of
wider distribution of software designers, both geographic and
temporal.

D. Collaboration Cost Drivers

One of the objectives of our interviews was to discover a list
of potential drivers of collaboration costs in software design.
While our expectation was that these drivers would be largely
implicit, the software architects we interviewed were keenly
aware of a number of drivers. They in fact suggested a list
of drivers that were perceived as having a significant impact
on collaboration. In this section, we list the drivers along with

45



the rationales suggested by the interviewees; we see this list
as a starting point for future exploration of costs incurred by
collaboration during software design. We posit that some of
the drivers may be correlated with each other.

• External dependency: It is generally accepted that having
a dependency on resources (e.g. modules, data, personnel)
that are owned and deployed outside the development or-
ganization increases the collaboration costs. Even for cases
when the client has full ownership of such a resource, we
learned from our interviews that costs related to utilizing
such external resources are often significantly higher than
expected. For example, the client may require a complicated
procedure or on-site presence to access the resource for
privacy reasons, which leads to long wait times, although
the same client required this system integration in the first
place. As a result, some software architects saw external
dependencies to already existing external modules owned
by the client as potentially costlier, in terms of required col-
laboration, than dependencies to modules that are developed
from scratch.

• Internal Module dependency: The interviewees corrob-
orated the conventional software engineering wisdom re-
garding high coupling: an increasing number of module
dependencies requires more collaboration. The way modules
depend on each other may also affect the task allocation.

• Task allocation: Task allocation is concerned with defining
and mapping design tasks to specific junior architects or
senior developers.
The interviewees considered that an improved task alloca-
tion results in less collaboration, which is aligned with the
previous research [8], [27]. The combined criteria software
architects use during task allocation include the properties
of the modules (i.e. size, complexity), the dependencies
between modules, and the technical background and geo-
graphic distribution of the junior architects. Several inter-
viewees, however, noted that the selection criteria can be
more direct in practice.

“Assigning senior developers on module design and
development is primarily based on the skillset the
senior developers have.”

• Advanced collaboration tools: The quality of software
development in general and software design in particular is
often dependent on the availability and quality of appropri-
ate tool support. Expectedly, the interviewees saw benefits
in using advanced technologies during collaborative design.
However, the interviewees noted several major obstacles to
adopting new collaboration tools, including high training
costs and support for only limited types of collaboration.
Further, some interviewees did not find appropriate collab-
oration tools for their needs. In several cases, however, they
came up with creative ways to use widely available general-
purpose technologies. For example, one used a “doodle” for
inter-module interface design, and another one developed
communication media based on online tools such as wiki or

special interest group (SIG) forums. This use of various on-
line tools has also been observed at other organizations [24].

• Collaboration experience of software architect: As in-
tuitively expected, the interviewees considered that prior
collaboration experience of a software architect decreases
the collaboration costs.
Collaboration experience of the lead architects can affect the
overall collaboration on the project as well as other drivers
such as task allocation:

“One of the responsibilities of a senior architect is to
facilitate communication between the junior architects
to establish common perspective with minimal necessity
of integration points.”

• Technical expertise of software architect: The intervie-
wees believed that lack of technical and domain expertise
tends to increase the collaboration costs. Software archi-
tects without enough expertise may spend more time on
collaborating with other software architects than those with
more extensive backgrounds. According to our interviews,
having such challenges is considered as a bottleneck of col-
laborative software design. One interviewee suggested that
having a technical consulting team inside the organization
can reduce this bottleneck.

• Mature development process: The collected interview
responses suggested that applying a mature software de-
velopment process reduces the required collaboration. For
example, a mature software development process clearly
defines the developers’ roles and communication patterns.
Thus, the process guides and sometimes “forces” the stake-
holders to produce relevant artifacts at the right moments to
prevent unnecessary future collaboration.

• Criticality of project: The interviewees consider that
projects with high criticality tend to require more collab-
oration. During the design of those projects, more frequent
meetings and discussions would happen to prevent any
misinterpretation of design artifacts or miscommunication
between architects, and to identify and resolve inconsisten-
cies and conflicts early.

• Time pressure: The interviewees mentioned that, in cases
of high time pressure, early rigorous planning is given lower
priority due to the urgency to complete the current tasks. At
the same time, they also agreed that this might leave higher
risk of resulting in problems during integration.

Impact. We consider that the above list of cost drivers pro-
vides a useful way of classifying and possibly directing future
research efforts — the new collaboration-support techniques
should target particular drivers. It is important to note that
the current list was suggested by the architects themselves.
Hence, there may exist additional implicit drivers; discovering
these requires further research including shadowing architects
during collaborative design and analyzing data from completed
projects. Furthermore, the exact impact of these drivers is yet
to be validated and quantified. In addition, the discussions of
the drivers with the interviewees revealed creative solutions
employed by software architects to reduce collaboration costs.

46



On-site (client location)

Domain 
Expert

Domain 
Expert

Domain 
Expert

Senior 
Architect

Development 
Team

Senior 
Developer

Development 
Team

Senior 
Developer

Development 
Team

Senior 
Developer

Fig. 5. Topology of Validation Interview 1

We believe that analyzing and documenting those solutions
may further inform and advance collaborative design research.

IV. CROSS-VALIDATION INTERVIEWS

Once we completed the 18 interviews and collected the
insights, in order to assess our findings, we conducted pre-
liminary cross-validation interviews with software architects
outside the target organization. We selected two interviewees
with an average of seven years of industry experience at two
different companies, both of which focus on IT services as well
as software product development. Those companies have their
headquarters in a different country and are of similar size and
maturity (CMMI level 5, over 1 billion USD revenue, over 10
thousand employees) as the original target organization (recall
Section II-B). The interview questions and overall process
were unchanged.

The aim of these additional interviews was not to get a
sample that would be large enough to draw statistically sig-
nificant conclusions about the collaborative design practices in
the two companies. Instead, we wanted to obtain preliminary
indication whether the experience of the architects at the
two additional companies resembled the experience of the 18
original interviewees.

Although the two companies had different attributes (loca-
tion, market) as compared to our primary target organization,
the collected responses suggested that all three companies
shared many commonalities in terms of the collaboration char-
acteristics and issues during collaborative software design. For
example, the additional interviews corroborated the following:

• Architect roles. The roles of the software architects differ
and can be highly specialized.

• Topologies. The architect topologies reported in the two
cross-validation interviews resembled the topologies from
Figure 2 and Figure 4. For example, one of the interviewees
drew the topology depicted in Figure 5. In this topology,
the junior architects can communicate directly with the
client-side domain experts in order to facilitate requirements
understanding, analysis, and revision.

• Distribution. The cross-validation interviews confirmed
that, in practice, potential collaboration issues stemming
from distribution are often mitigated by avoiding distribution
in the first place. For example, in case of the topology from
Figure 5, all of the architects as well as the development
teams were moved to the client location for the duration of
the project.

• Cost driver awareness. We found that the two intervie-
wees were keenly aware of several cost drivers (recall
Section III-D). In particular, the interviewees suggested that
(1) a lack of domain knowledge is a prominent cause of
collaboration issues and (2) unprecedented projects tend to
have higher collaboration cost; note that both of these relate
to the technical expertise cost driver from Section III-D.
Similarly, the architects agreed that internal dependencies
increase collaboration costs, while suggesting that dealing
with those dependencies should not be deferred to later
stages of a project’s life cycle. The following quotes were
obtained from the two interviews (translated from Korean):

“Teams tend to develop their own components for
a set of functionalities that are shared by different
jobs rather than coordinate to develop and share them
together (due to high collaboration cost).”
“We often face inconsistencies between components
developed by different engineers in later stages. Half of
the cases lead to full-scale reverting to earlier stages,
and local patches are made for the other half.”

V. THREATS TO VALIDITY

In this section, we explain the limitations of our insights
with respect to the fact that they stem from a preliminary set
of exploratory interviews.

A. Representativeness

The results presented in this paper are based on a set of
collected responses and anecdotes from the interviews rather
than a set of statistically significant findings from a system-
atically designed survey. Therefore, our insights may not be
representative of the practices at the target organization as a
whole, and more generally, of the current industrial practices.
However, this was not the intended purpose of our interviews:
with these exploratory free-form interviews we aimed to obtain
insights that would help us, as well as other researchers, to
form informed hypotheses for future empirical research. In
addition, while a set of 18 interviews could be sufficiently
large for a study of a few variables, we acknowledge that
additional variables with impact on collaboration may yet to
be identified due to the limited number of samples. As a
mitigating factor to the above limitations, we are currently
conducting a large-scale survey to verify the insights and to
further explore the practices in collaborative software design.

B. Generality

As discussed above, the 18 interviews were conducted at
a single organization, which potentially limits the generality
of the outcomes in the context of broader industrial practices.

47



However, there are three mitigating factors that strengthen the
general value of our conclusions:
• Organization expertise: Our target organization is a very

large software company that is considered as a mature soft-
ware development organization. We thus believe it applies
practices that are at least somewhat overlapping with those
used by the competitors. Furthermore, considering the target
organization’s maturity (e.g., CMMI level 5 organization),
its collaboration process can be considered the state-of-the-
practice. Hence, we expect that the less-capable software
organizations face collaboration issues that are equal or even
more prominent than those found at our target organization.

• Project coverage: The interviews we conducted covered
software architects whose experience differed in terms of
their project types and project domains. In particular, we
selected architects who worked on various types of software
development projects, and also covered various application
domains. This variation serves the purposes of obtaining
findings that apply more generality regardless of the project
type and application domain.

• Cross-validation interviews: By having the cross-validation
interviews outside the target organization, we found that our
insights were not limited to the target organization but some-
thing that could be observable from other organizations.

VI. CONCLUSIONS

In this paper, we present the results of a set of interviews
we conducted with experienced software architects who are
working at a large global software solutions provider. The goal
of the interviews was to observe how collaborative software
design occurs in practice. We presented the insights we gained
from the interviews; these insights point to necessity of further
research and suggest several potentially fruitful topics in this
area. First, future research should target the specific architect-
roles that require greater collaboration. Second, the bottlenecks
of software design, extractable from the identified topologies,
can suggest areas which would maximize the reduction of
collaboration costs. Third, the remedies employed at the target
organization to reduce the impact of geographic distribution
should be verified, while further studies are required to reveal
additional opportunities. Finally, the collaboration cost drivers
identified by the software architects suggest promising cate-
gories of future research efforts to reduce collaboration costs.

As we look to the future, although software design is an
activity that highly relies on “soft skills” that is not readily
documentable nor formalized as a general structure, we aim
to achieve a clearly defined collaborative software design
process. Such a process will aid software architects to work
better in concert and optimize their tasks, leading to reduced
costs and higher quality of the resulting software systems. We
also believe that such a process will guide the less experienced
software architects to quickly grasp important concepts and
rapidly improve their expertise.

ACKNOWLEDGMENTS

This work has been supported by Infosys Limited.

REFERENCES

[1] B. Curtis, H. Krasner, and N. Iscoe, “A Field Study of the Software
Design Process for Large Systems,” Communications of the ACM,
vol. 31, no. 11, pp. 1268–1287, 1988.

[2] A. Begel, N. Nagappan, C. Poile, and L. Layman, “Coordination in
Large-Scale Software Teams,” Proceedings of CHASE, pp. 1–7, 2009.

[3] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb, “Software
Dependencies, Work dependencies, and Their Impact on Failures,” IEEE
TSE, vol. 35, no. 6, pp. 864–878, 2009.

[4] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, “Distance,
Dependencies, and Delay in a Global Collaboration,” Proceedings of
CSCW, 2000.

[5] A. Lamersdorf, J. Münch, A. F. V. Torre, C. R. Sánchez, and D. Rom-
bach, “Estimating the Effort Overhead in Global Software Develop-
ment,” Proceedings of ICGSE, pp. 267–276, 2010.

[6] M. T. Lane and P. J. Ågerfalk, “On the Suitability of Particular Software
Development Roles to Global Software Development,” ICGSE, 2008.

[7] A. Mockus and J. D. Herbsleb, “Expertise Browser: A Quantitative
Approach to Identifying Expertise,” Proceedings of ICSE, 2002.

[8] S. Mohan and J. Fernandez, “Distributed Software Development
Projects: Work Breakdown Approaches to Overcome Key Coordination
Challenges,” Proceedings of ISEC, 2010.

[9] A. Sarma, D. Redmiles, and A. van der Hoek, “Categorizing the
Spectrum of Coordination Technology,” IEEE Computer, 2010.

[10] X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting Model In-
consistency through Operation-Based Model Construction,” Proceedings
of ICSE, pp. 511–520, 2009.

[11] A. Egyed, “Automatically Detecting and Tracking Inconsistencies in
Software Design Models,” IEEE TSE, vol. 37, no. 2, pp. 188–204, 2010.

[12] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein, “xlinkit:
A Consistency Checking and Smart Link Generation Service,” ACM
Transactions on Internet Technology, vol. 2, no. 2, pp. 151–185, 2002.

[13] K. Altmanninger, M. Seidl, and M. Wimmer, “A Survey on Model Ver-
sioning Approaches,” International Journal of Web Information Systems,
vol. 5, no. 3, pp. 271–304, 2009.

[14] M. Koegel, M. Herrmannsdoerfer, J. Helming, and Y. Li, “State-based
vs. Operation-based Change Tracking,” Proceedings of MODELS, 2009.

[15] S. Maoz, J. O. Ringert, and B. Rumpe, “ADDiff: Semantic Differencing
for Activity Diagrams,” Proceedings of ESEC/FSE, 2011.

[16] T. N. Nguyen, E. V. Munson, and J. T. Boyland, “An Infrastructure for
Development of Object-Oriented, Multi-Level Configuration Manage-
ment Services,” Proceedings of ICSE, 2005.

[17] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson, “FASTDash:
A Visual Dashboard for Fostering Awareness in Software Teams,”
Proceedings of CHI, pp. 1313–1322, 2007.

[18] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive Detection
of Collaboration Conflicts,” Proceedings of ESEC/FSE, 2011.

[19] A. Sarma, D. F. Redmiles, and A. Van Der Hoek, “Palantı́r: Early De-
tection of Development Conflicts Arising from Parallel Code Changes,”
IEEE TSE, vol. 38, no. 4, pp. 889–908, 2012.

[20] M. Cataldo, C. Shelton, Y. Choi, Y. Y. Huang, V. Ramesh, D. Saini,
and L. Y. Wang, “Camel: A Tool for Collaborative Distributed Software
Design,” Proceedings of ICGSE, pp. 83–92, 2009.

[21] H. K. Dam and A. Ghose, “An Agent-based Framework for Distributed
Collaborative Model Evolution,” Proceedings of IWPSE-EVOL, 2011.

[22] N. Mangano and A. Van Der Hoek, “The Design and Evaluation of
a Tool to Support Software Designers at the Whiteboard,” Automated
Software Engineering, pp. 1–41, 2012.

[23] J. Bang, D. Popescu, G. Edwards, N. Medvidović, N. Kulkarni, G. M.
Rama, and S. Padmanabhuni, “CoDesign – A Highly Extensible Col-
laborative Software Modeling Framework,” Proceedings of ICSE, 2010.

[24] H. Unphon and Y. Dittrich, “Software architecture awareness in long-
term software product evolution,” Journal of Systems and Software,
vol. 83, no. 11, pp. 2211–2226, 2010.

[25] M. Figueiredo, C. de Souza, M. Pereira, J. Nicolas Audy, and R. Prik-
ladnicki, “On the Role of Information Technology Systems Architects,”
Proceedings of AMCIS, 2012.

[26] N. Ramasubbu, M. Cataldo, R. K. Balan, and J. D. Herbsleb, “Config-
uring Global Software Teams: A Multi-Company Analysis of Project
Productivity, Quality, and Profits,” Proceedings of ICSE, 2011.

[27] A. Lamersdorf and J. Münch, “TAMRI: A Tool for Supporting Task
Distribution in Global Software Development Projects,” Proceedings of
ICGSE, pp. 322–327, 2009.

48


