
PROACTIVE DETECTION OF HIGHER-ORDER

SOFTWARE DESIGN CONFLICTS

by

Jae young Bang

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

May 2015

Copyright 2015 Jae young Bang

Dedication

To my wife Youngmi, who has always been next to me through thick and thin during

my PhD years, and without whom I would not have been able to complete this work.

ii

Acknowledgments

It has been a long journey to become a scientist, an engineer, and a scholar ever since

I began dreaming of becoming one. I would not have been able to reach this milestone

without the tremendous help from the people around me, and I consider myself lucky for

receiving all the support. The last seven years I spent as a grad student have been the

most exciting time of my life. I am grateful to everyone who has been there for me.

I would especially like to thank my advisor Nenad Medvidović for his priceless guid-

ance. I still remember the day he told me that I was admitted to the PhD program at

USC. I was trying to look cool, and simply said “oh thanks”, but I was screaming from

inside with joy. Since that day, he has always been patient with me even when I make

mistakes and given me numerous, invaluable advices so that I could grow as a scholar.

I have had an amazing dissertation committee, and I would also like to thank each of

the members, Professor Chris Mattmann, Professor William G.J. Halfond, and Professor

Viktor Prasanna, for their constructive comments they have given me on my research.

This dissertation would not have been of this quality without their meticulous guidance.

I would also like to acknowledge my colleagues with whom I have worked during my

PhD years. Yuriy Brun, who now has become a professor, was the first one with whom

I worked in my early days after joining the Software Architecture Research Group. He

iii

taught me the first steps of becoming a scholar by showing me how to conduct research

projects like a “pro”. He is indeed an amazing mentor. I co-authored my very first

first-authored paper with Daniel Popescu and George Edwards, and I learned a lot from

the ways they work. Daniel was highly detail-oriented (in a good way) and George

was excellent at organizing thoughts. Ivo Krka was the one with whom I went on the

unforgettable research trip to Infosys in India. He and I had countless discussions from

which I gained the insights that eventually formed my dissertation. Joshua Garcia showed

me how enthusiastic and focused a scholar should be. During my PhD, I have enjoyed

collaborating with many other students in the research group (in the order I first met

them); Dave, Farshad, Daniel (Link), Reza, Youn, Lau, Eric, Duc, Pooyan, Arman, Ali,

Yixue, Roohy, and Michael. Su and Tip from Prof. Boehm’s group have been huge

inspirations as well. It has been a joy to work with you! Also, I cannot even imagine how

my time at USC would have been like without Lizsl, the greatest PhD program advisor.

I should not forget to mention the USC Trojans, the LA Dodgers, and the LA Lakers

players for continuously performing at league-topping level. I will never be able to forget

those days I was writing papers while watching their spectacular, dramatic games on TV.

Lastly, but most importantly, I would like to thank my family members for their

unconditional love. I thank my beautiful wife, Youngmi, for her support and patience

through my PhD years. My parents, Jinsoo Bang and Ok Ja Lee, supported me for my

entire life giving me everything they had so that I could have as many opportunities

as I wanted. My grandfather Byungran to whom I promised to bring a PhD degree

unfortunately passed away a few years ago. I wish he would know that I finally made it.

iv

Table of Contents

Dedication ii

Acknowledgments iii

List Of Tables vii

List of Figures viii

Abstract x

Chapter 1 Introduction 1
1.1 The Challenge: Software Design Conflicts 1
1.2 Solution to An Analogous Problem in Implementation 3
1.3 Insights and Hypotheses 5

1.3.1 Hypothesis 1 5
1.3.2 Hypothesis 2 6

1.4 The Proposed Solution and The Contributions 7
1.5 Structure of This Dissertation 10

Chapter 2 The Problem Space 11
2.1 Background 11

2.1.1 Software Design Concepts 11
2.1.2 Global Software Engineering 12
2.1.3 Version Control Systems Overview 13
2.1.4 Software Model Version Control Terminology 14

2.2 Software Design Conflicts 16
2.3 Conflict Detection Practice 19

2.3.1 Detecting Conflicts 19
2.3.2 Comprehending Conflicts 20

2.4 Proactive Conflict Detection 21

Chapter 3 Solution 23
3.1 The Architecture of FLAME 24

3.1.1 Applying Proactive Conflict Detection to Software Design 24
3.1.2 Scaling Conflict Detection 27
3.1.3 Prioritizing Conflict Detection 33

v

3.2 The Implementation of FLAME 38
3.2.1 Primary Components 39
3.2.2 Version Control in FLAME 43
3.2.3 Detection Engines 44

Chapter 4 Evaluation 49
4.1 Empirical Evaluation 50

4.1.1 Study Setup 50
4.1.2 The Global Engine User Study Result 56
4.1.3 The Head-and-Local Engine User Study Result 60
4.1.4 Threats to Validity 66

4.2 Systematic Evaluation 67
4.2.1 Scalability and Performance 68
4.2.2 Setting a Bound on Conflict Detection Time 77

Chapter 5 Related Work 82
5.1 Detection of Inconsistencies in Software Models 82
5.2 Software Model Version Control 84
5.3 Proactive Conflict Detection 86

Chapter 6 Concluding Remarks 89

References 94

Appendix A
Design Tasks from the User Studies 100
A.1 Global Engine User Study Design Tasks 101
A.2 Head-and-Local Engine Study Design Tasks 102

vi

List Of Tables

4.1 FLAME User Studies Comparison. 51

4.2 Global Engine User Study: Variables. 60

4.3 Head-and-Local Engine User Study: Variables. 65

4.4 Head-and-Local Engine User Study: Post-Session Survey. 66

5.1 Proactive Conflict Detection Studies Comparison. 88

vii

List of Figures

2.1 A high-level model of Next-Generation Climate Architecture. 17

3.1 High-level architecture of FLAME. 26

3.2 High-level architecture of FLAME that uses slave nodes for conflict detection. 31

3.3 A model of detector-side that uses slave nodes for conflict detection. 32

3.4 A higher-order design conflict scenario. 34

3.5 A model of detector-side that retrieves newest model representation first. 37

3.6 Detailed architecture of FLAME. 40

3.7 The simple FLAME GUI for NGCA. 42

3.8 Design Events retrieval from Event Queues in Detection Engines. 48

4.1 A high-level model of BOINC. 53

4.2 Detector-side configurations in the two user studies. 55

4.3 Lifetime of higher-order conflicts in the Global Engine user study. 58

4.4 Lifetime of higher-order conflicts in the Head-and-Local Engine user study. 63

4.5 Box plot and histogram of conflict detection time of the no-delay scenario. 69

4.6 Estimating the “sufficient” number of slave nodes. 70

4.7 Histograms of conflict detection time using various numbers of slave nodes. 73

4.8 Modeling operation logs: 2-architect scenarios. 76

viii

4.9 Modeling operation logs: 24-architect scenarios. 77

4.10 Box plot and histogram of conflict detection time of 24-architect scenarios. 78

4.11 Histograms of conflicts time-to-detection: 1 slave node. 80

4.12 Histograms of conflicts time-to-detection: 2 slave nodes. 81

A.1 A Global Engine user study design task sample. 101

A.2 A Head-and-Local Engine user study design task sample. 102

ix

Abstract

A team of software architects who collaboratively evolve a software model often rely

on a copy-edit-merge style version control system (VCS) via which they exchange and

merge the individual changes they perform to the model. However, because the current

generation of software model VCSs detect conflicts only when architects synchronize

their models, the architects remain unaware of newly arising conflicts until the next

synchronization, raising the risk that delayed conflict resolution will be much harder.

Collaborative software implementation faces an analogous risk, and there are existing

techniques and tools that proactively detect conflicts at the level of source code in order

to minimize the conflict unawareness. However, it is challenging to directly apply them

as they are to collaborative software design because those are constructed to manage

code-level rather than model-level changes. Furthermore, no empirical data is currently

available regarding the impact of proactive conflict detection on collaborative design.

In order to address the risk of design conflicts, this dissertation applies proactive

conflict detection to collaborative software design. Specifically, this dissertation focuses

on higher-order conflicts that do not prevent merging but do violate a system’s consis-

tency rules, because higher-order conflicts are generally harder to detect and resolve than

synchronization conflicts that are caused by incompatible changes and prevent merging.

x

This dissertation presents FLAME, an extensible collaborative software design frame-

work that detects the higher-order design conflicts in a proactive way, i.e., before an

architect synchronizes her model and finally becomes aware of them. FLAME has an ex-

tensible architecture that provides facilities via which the modeling tools and consistency

checkers appropriate for the target system’s domain can be integrated. FLAME captures

modeling changes as they are made, performs a trial merging and conflict detection in

the background in order to immediately detect newly arising conflicts, and presents the

results to the architects. Also, FLAME explicitly deals with the potentially resource-

intensive computations necessary for higher-order conflict detection by parallelizing and

offloading the burden to remote nodes. Moreover, by implementing its novel algorithm

that prioritizes instances of conflict detection, FLAME guarantees that the outstanding

conflicts at a given moment can be detected in a reasonable amount of time even when

the available computation resources for conflict detection are scarce.

This dissertation presents the results from two user studies and three systematic

experiments on FLAME. The two user studies were conducted involving 90 participants,

and the results indicated that the participants who used FLAME were able to create

higher quality models in the same amount of time, and to detect and resolve higher-order

conflicts earlier and more quickly. The results from the three systematic experiments

provided evidence that FLAME minimizes delay in conflict detection, adds only negligible

amount of overhead as the number of architects increases, and delivers conflict information

early even when the computation resources for conflict detection are limited.

xi

Chapter 1

Introduction

1.1 The Challenge: Software Design Conflicts

Modern software systems are often large and complex, requiring multiple engineering

teams that consist of a number of members for their development. During the develop-

ment, numerous decisions are made on various aspects of the system under development

including the structure, the functionalities, as well as the non-functional properties of the

system such as performance, security, etc. This essential development activity of making

decisions is called software design. A key set of stakeholders who engage in software de-

sign, software architects, make design decisions that define the architecture of the system,

reify those decisions into software models [61], and evolve the models as a team [39].

The team of software architects, when they design a large software system, often divide

the system into modular subsystems, simultaneously design each of those, and merge them

later [6]. A number of design environments have emerged to support this collaborative

process of software model evolution. There are the group editors that provide a shared

“whiteboard” [10,16,40] or synchronize the models in real time [8], but the major research

1

effort has been toward the asynchronous, copy-edit-merge style software model version

control systems (VCSs). Those VCSs provide each architect her individual workspace by

loosely synchronizing the models in an on-demand fashion to parallelize the architects’

work and maximize their productivity [2].

However, the loose synchronization of the VCSs exposes software architects to the risk

of making design decisions that conflict with each other, called design conflicts [8]. In

general, design conflicts can be categorized into two different types: synchronization and

higher-order conflicts [9]. A synchronization conflict is a set of contradictory modeling

changes by multiple architects made to the same artifact or to closely related artifacts,

which means they cannot be merged together. A higher-order conflict is a set of modeling

changes by multiple architects that can be merged but together violate the system’s

consistency rules (e.g., cardinality defined by the metamodel). While both types pose

similar risks, they differ in that they require different sets of detection techniques.

Design conflicts are a major challenge in collaborative software design. Today’s VCSs

detect conflicts only when software architects synchronize their models. As a result, the

architects often make changes to the model without fully understanding what issues may

arise when they merge their own changes with the others’ changes. It is also possible that

new changes made after a conflict has been introduced need to be reversed in the process

of resolving the conflict, which results in wasted time and effort [6]. Moreover, the current

trend of global software engineering, in which software engineering teams tend to be widely

distributed geographically due to economic advantages [57], only aggravates the challenge

by reducing the opportunities for direct communication among the architects [36,50].

2

What if those conflicts could be detected earlier, in a proactive fashion, that is, before

an architect synchronizes her model and finally becomes aware of them? This dissertation

will present a technique that alleviates the risk of having design conflicts by proactively

detecting them and informing the architects of the conflict information early. Specifically,

of the two types of design conflicts, this dissertation will focus on the higher-order conflicts

because they are generally more difficult to detect and resolve [9, 14, 53]. The remainder

of this chapter outlines (1) the existing techniques and their limitations, (2) the list of

hypotheses that will be tested by this dissertation, (3) the proposed approach and the

contributions of the dissertation, and lastly, (4) the structure of the remaining chapters.

1.2 Solution to An Analogous Problem in Implementation

Collaborative software implementation faces a similar challenge to design conflicts. Soft-

ware developers who use an asynchronous VCS are exposed to the risk of causing conflicts

at the level of source code, and the state-of-the-art techniques and tools are indeed ca-

pable of proactively providing the code-level conflict information [54] by continuously

performing trial merging and conflict detection in the background. However, while the

previous, code-level proactive conflict detection research sheds light on how to deal with

the conflicts in general, it is challenging to directly apply that to the conflicts at the level

of software models due to the following two reasons. First, the existing proactive conflict

detection tools are not designed to manage changes made to graphical software models

and are often limited to specific development environments into which they are integrated.

Tools that are designed to manage textual changes made to source code are known not

3

to work well with graphical software models [1,9,38,44,48], and may not be configurable

to deal with various kinds of design conflicts that differ per design environment. Second,

to our best knowledge, no empirical study has been reported yet on whether or to what

extent proactive conflict detection may impact the cost of collaborative software design.

Furthermore, the existing proactive conflict detection techniques are limited with re-

gards to the version of the artifacts under version control (e.g., source code or software

models) on which they perform proactive conflict detection. To detect conflicts early,

those techniques perform trial merging and conflict detection activities in the background.

Different versions of the artifacts may be derived at the time of merging depending on (1)

how frequently one wishes to detect conflicts and (2) which and whose changes one needs

to include in each instance of the detection. Techniques that derive different versions

would differ in how early they detect the conflicts and would suffer from different num-

bers of false positives. For example, Palant́ır [55], a code-level proactive conflict detection

tool, detects conflicts at every file saving or timer expiration while another similar tool,

Crystal [15], detects conflicts at every synchronization. Between the two, Palant́ır would

detect conflicts earlier, but because it also marks some “benign” conflicts that could have

been resolved before they are synchronized as actual conflicts, it is likely to suffer from

larger numbers of false positives [14]. While the appropriate versions of the artifacts to

derive on which to perform proactive conflict detection may differ for different develop-

ment activities (e.g., design and implementation) or different target systems’ domains,

the existing tools are limited to certain versions on which they perform conflict detection.

4

An added challenge is that the previous proactive conflict detection research has not

explicitly addressed the delayed conflict detection problem, which occurs when the com-

putation resources necessary to perform proactive conflict detection surpass what is avail-

able. In that case, the conflict detection and the delivery of the conflict information to

software architects would consume a lot of time, and that may hamper the actual benefits

of proactively detecting the conflicts. Many well-known model analysis techniques that

can be adopted for design conflict detection (e.g., discrete-event simulation [56], Markov-

chain-based reliability analysis [65], or queueing-network-based performance analysis [4])

are indeed highly computation-intensive and time-consuming. Unfortunately, the exist-

ing techniques implicitly assume that each instance of conflict detection will be done in

nominal time, and it is not yet clearly known how the delayed conflict detection problem

will impact the benefits of proactive detection of higher-order design conflicts.

1.3 Insights and Hypotheses

The limitations in the existing conflict detection techniques and the challenges in applying

them to collaborative software design, as introduced in Section 1.2, suggest that several

research questions regarding design conflicts and proactive conflict detection remain open.

The rest of this section presents the hypotheses that this dissertation tests in order to

overcome those limitations and challenges.

1.3.1 Hypothesis 1

Insight 1A: In a VCS, software architects initially duplicate the model in the repository

to create a local working copy of the model. They perform commits to merge the changes

5

that have been made in the working copy to the repository and updates to merge the

changes in the repository that have been made by others to the working copy.

Insight 1B: An extensible collaborative software design environment that proactively

detects higher-order conflicts can be built such that it delivers conflict information to

architects earlier than a similar environment that only detects conflicts on-demand.

Insight 1C: A proactive conflict detection technique that derives and performs conflict

detection on the version of a software model that consists of all changes made up to

a given moment, whether or not committed, would provide architects the awareness of

what conflicts may arise if every architect performs a commit at that moment.

Insight 1D: A proactive conflict detection technique that, for each architect, derives and

performs conflict detection on the version of a software model that is based on the newest

version in the repository and merges the uncommitted changes made in her working copy

up to a given moment would provide the architect the awareness of what conflicts may

arise if she performs an update at that moment.

Hypothesis 1: In a collaborative software design environment that proactively detects

higher-order conflicts, the quality of the resulting model is better after a modeling session

of the same length conducted by engineers of the same experience level than in a similar

environment that only detects conflicts on-demand.

1.3.2 Hypothesis 2

Insight 2A: The time to complete performing an instance of higher-order design conflict

detection may take longer and the conflict information delivery to software architects may

6

be delayed when the machine on which the instance is processed also has other instances

to perform than when the instance is the only one to be processed on that machine.

Insight 2B: An instance of higher-order design conflict detection consists of a version

of a software model as the input and a consistency checker to be run on that version.

Different instances do not depend on the results of the other instances, hence they can

be processed independently and simultaneously on multiple machines in parallel.

Insight 2C: When Mn represents a version of a software model in which a higher-order

design conflict c initially appeared, and Mn+α represents a version of the same model

that is chronologically behind Mn, the conflict c can be detected by performing a conflict

detection on Mn+α, if c has not been resolved by the time Mn+α was created.

Hypothesis 2: For cases where the number of higher-order software design conflict

detection instances to be processed exceeds the number of available machines on which

those instances can be processed simultaneously, an algorithm that assigns higher priority

to the instances with chronologically newer versions of the model can be devised such that,

when t is the longest time required to process a single detection instance with no delay,

any outstanding higher-order design conflict that had not already been resolved at a given

moment can be detected, at most, in the amount of time 2 · t from its creation.

1.4 The Proposed Solution and The Contributions

This dissertation presents the research that applies proactive conflict detection to collab-

orative software design. The list of the contributions of this dissertation is as following:

1. The first application of proactive conflict detection on collaborative software design.

7

2. The extensible collaborative software design environment that can integrate model-

ing tools and model analysis techniques appropriate for the target system’s domain.

3. The distributed conflict detection architecture that moves the burden to remote

nodes with minimal overhead in order to not disturb collaborative design process.

4. The conflict detection prioritization algorithm that ensures early delivery of conflict

information even when computation resources are scarce.

5. The first reported empirical evidence that proactive conflict detection positively

impacts collaborative software design.

It is important to note that the focus of this dissertation is not on the manner in which

higher-order design conflicts are detected, which has already been widely studied [2]. It

focuses on the ways to proactively detect the higher-order conflicts by exploiting the

existing techniques, and further, on the impact of doing so on collaborative design.

FLAME has been developed as an attempt to alleviate the risk that higher-order

software design conflicts pose. It does so by performing the conflict detection activities

in the background without getting software architects’ attention and by notifying the

architects of the conflict information early in order to minimize the risk of having un-

known higher-order design conflicts. FLAME is unique as it is the first reported proactive

conflict detection framework that is specifically targeting collaborative software design.

It has the following characteristics that distinguish it from the existing tools. First, it is

extensible to allow the architects to plug-in the most appropriate conflict detection tools

for their modeling environment. Second, it can scale by exploiting cloud technology to

parallelize the potentially computation-intensive and time-consuming higher-order design

8

conflict detection. Third, it ensures early delivery of conflict information by prioritizing

the detection instances and setting a worst-case bound on the time of detecting newly

arising higher-order design conflicts. Fourth, it implements operation-based model con-

struction [12, 38] to be able to perform conflict detection at the rate of each individual

modeling change if necessary, which in turn, enables adopting different techniques that

derive and perform proactive conflict detection on various versions of the model.

Different types of analytical and empirical evidence on how the proactive conflict

detection that FLAME provides positively impacts collaborative software design will be

presented in the dissertation. As one example, the dissertation reports the results of two

user studies conducted with a total of 90 participants using FLAME to assess whether

and to what extent providing proactive conflict detection impacts the cost of collaborative

software design. In each of the studies, the participants were divided into two groups

and performed collaborative software design tasks using FLAME in its two modes: one

that provides proactive conflict detection and the other that does not. All modeling

changes and design conflicts were tracked and recorded by FLAME, and the collected

data was used for the comparisons between the two modes. The result showed that the

participants who were provided with proactive conflict detection had more opportunities

to communicate and were able to create higher-quality models in the same amount of

time and to detect and resolve higher-order conflicts earlier and more quickly.

Using the data collected from the user studies, three systematic experiments were con-

ducted on how the framework scales by exploiting remote nodes and prioritizes the conflict

detection instances to ensure early delivery of conflict information to the architects. The

first experiment evaluated whether the delay in conflict detection actually decreases as

9

FLAME parallelizes the detection and offloads the burden to remote nodes. The second

experiment focused on the overhead in conflict detection time that FLAME may add in

collaborative design scenarios involving many (e.g., 24) architects where FLAME has to

process a large number of simultaneous instances of conflict detection. The third exper-

iment compared the two FLAME configurations, one that does and the other that does

not implement FLAME’s algorithm that prioritizes the conflict detection instances. The

results from the experiments showed that FLAME (1) alleviated the delay in conflict

detection, exploiting remote nodes, (2) added only a negligible amount of overhead even

when it processes a large volume of simultaneous conflict detection, and (3) detected

outstanding higher-order conflicts at a given moment within the amount of time 2 · t at

most (where t is the longest time required to process a single detection instance with no

delay) when the available computation resources for conflict detection were limited.

1.5 Structure of This Dissertation

The remainder of this dissertation is structured as follows: Chapter 2 defines the problem

this dissertation aims to solve. The architecture and implementation of FLAME, the

proposed solution, is in Chapter 3, and the evaluation is presented in Chapter 4. Chapter 5

provides the details on related work, and lastly, the dissertation concludes in Chapter 6.

10

Chapter 2

The Problem Space

This dissertation targets questions such as “What are the higher-order design conflicts?”,

“Why are they undesirable?”, and “In which ways can they properly be handled?” In

order to drive this discussion, in this chapter, the problem space of the dissertation will be

defined in detail. The rest of the chapter is organized as follows. It begins with describing

the background on which this dissertation is founded in Section 2.1. Then in Section 2.2,

the two types of design conflicts, synchronization and higher-order, are defined using a

realistic collaborative software design scenario. Section 2.3 describes the ways architects

detect and resolve those conflicts in practice. Lastly, in Section 2.4, the proactive conflict

detection technique and the limitations of the existing applications of it are revisited.

2.1 Background

2.1.1 Software Design Concepts

The definition of software architecture that will be used throughout this dissertation is “a

set of principle decisions about a software system” [61]. Talyer et al. [61] define software

11

design as “an activity that creates part of a system’s architecture, which typically defines a

system’s structure, identification of its primary components, and their interconnections”.

Software design is the activity on which this dissertation focuses. Engineers who perform

software design, a key activity in developing software systems, make design decisions,

“the decisions encompassing every aspect of the system under development” [61]. Those

decisions are regarding the structure of the system, the functional behavior, the interac-

tions, the non-functional properties, and even the implementation. Software architects

are the engineers who make those design decisions, and they produce software models as

the output. A software model is defined as “an artifact documenting some or all of the

architectural design decisions about a system” [61]. Lastly, the activity of reifying and

documenting a software model is called software modeling.

2.1.2 Global Software Engineering

In recent years, due to economic advantages, many technology companies have trans-

ferred significant portions of their software development activities to emerging economies

such as India and China [57]. At the same time, many stakeholders, such as customers

and requirements engineers, remain in developed countries. As a result, companies have

created global software development teams in which engineers are separated by large geo-

graphic distances [59]. The engineers coordinate with each other from distributed sites in

such collaboration environments. While the economic advantages of distributed software

development are real, communication and coordination challenges must be overcome in

12

order to fully realize these advantages. There is significant evidence that geographic sep-

aration can drastically reduce communication among coworkers [36, 50] and slow down

collaborative development activities [35] including collaborative software design [6].

2.1.3 Version Control Systems Overview

During software development, engineers produce many artifacts such as requirements

documents, software models, and source code. Those artifacts continue to evolve during

the development, incorporating numerous changes made by the engineers. To track the

changes and organize the artifacts, engineers have adopted version control systems (VCSs)

that “track incremental versions (or revisions) of files and directories over time” [18].

Version control is “the task of keeping software systems consisting of many versions and

configurations well organized” [62]. Since the very first stint of VCS, which was Source

Code Control System (SCCS) by Rochkind [52], many VCSs have arisen to support

collaborating software engineers [19]. Concurrent Versions System (CVS) [31], Subversion

(SVN) [17], and Git [27] are among the variants that have widely been adopted by the

public. Unfortunately, those VCSs that are designed to manage textual artifacts are

known not to work well with graphical software models (recall Section 1.2), hence a

number of VCSs that are specifically designed to manage software models have emerged

to cope with the challenges of collaborative software design [2]. For example, those

software model VCSs are (1) capable of computing differences between independently

modified copies of a software model [44, 48], (2) customized for a modeling tool [26] or a

notation [42,46], or (3) extensible to adapt to a given modeling environment [1].

13

However, since the current generation of software model VCSs only detect or allow

detecting conflicts when software architects synchronize their models, the architects are

often exposed to the risk of making changes to the models without fully knowing what may

happen when they merge each other’s changes. Existing research has not yet satisfactorily

explored potential mitigations of that risk, and the problem still remains open.

2.1.4 Software Model Version Control Terminology

This section introduces the common version control terms that will be used in the rest

of this dissertation. The terms introduced here are used by many VCSs that are widely

used in practice (e.g., Concurrent Versions System [31] and Subversion [17]), or if they

use different terms, the corresponding terms are directly interchangeable.

A copy-edit-merge style software model VCS maintains a centralized copy of the model

called the repository. Software architects who work as a team “copy” the model in the

repository to their local machines. Those copies of the model located in the local machines

of the architects are called the working copies. That version control activity–copying

the entire repository to create a working copy–happens at the beginning of the design

session, and the activity is called the check-out. During the design session, the architects

make design decisions and make modifications to their working copies. When each of

those architects has completed a segment of work and is confident with the outcome,

she performs the commit activity to push the modeling changes she has locally made to

the repository. The architects also periodically perform the update activity to pull the

modeling changes that have been made by others and have been committed. The sets of

14

modeling changes made by the architects are automatically merged by the VCS as the

architects perform those version control activities.

The copies of the model—the repository and the working copies—evolve over time,

and therefore versions of the model are created along the way. A version (or a revision) of

the model is a state of the model that consists of a list of modeling changes that have been

made up to a particular point in time. A base version is a version of a model on which

an architect makes new modeling changes. The head version is the newest version of the

model in the repository, and a new head version is created when an architect successfully

commits new modeling changes made in her working copy to the central repository.

A working copy can be in two states in terms of its relationship with the repository.

First, a working copy can be in the same or current state when its base version is the same

as the head version. Second, a working copy can be in the behind or trailing state when

its base version is older than the head version. These states show whether there are new

modeling changes that have been committed to the repository but are missing from the

working copy. For example, if a working copy is in the same state with the repository,

that means the working copy has all the modeling changes that the head version has,

hence performing an update at the moment is unnecessary. On the other hand, if the

working copy is in the behind state, that means an update will be necessary since there

are new modeling changes in the head version that are missing from the working copy.

15

2.2 Software Design Conflicts

When sets of modeling changes are merged, two types of conflicts—synchronization and

higher-order—could occur. To clearly illustrate the problem and to drive the discussion

throughout this dissertation, an example system called Next-Generation Climate Archi-

tecture (NGCA, depicted in Figure 2.1) will be used. NGCA is created based on the

design documents of NASA Computational Modeling Algorithms and Cyberinfrastruc-

ture (CMAC) [43], which is an infrastructure that supports computationally-heavy data

comparisons between climate simulation models’ output and the actual climate data col-

lected via remote sensors. Because the climate simulation models and databases that

compose NGCA belong to different organizations scattered around the world, designing

NGCA naturally becomes collaborative, involving architects from those organizations.

Consider the following scenario with two architects participating in the NGCA design.

The architects make design decisions and document the decisions into a soft-

ware model. The modeling environment they use is semantically-rich and

domain-specific, and is capable of estimating several critical runtime prop-

erties of NGCA, including memory usage, message latency, and energy con-

sumption. The model is managed by a current generation, copy-edit-merge

style software model VCS. In our scenario, each of the two architects makes

changes to her respective working copy, runs estimations locally, and moves to

another design task after she did not find any issue in the estimated property

values. However, a while later, when they try to synchronize their working

16

F
ig

u
re

2.
1:

A
h

ig
h

-l
ev

el
m

o
d

el
of

N
ex

t-
G

en
er

at
io

n
C

li
m

at
e

A
rc

h
it

ec
tu

re
.

17

copies by merging the changes, the two architects realize one or both of the

following two situations:

1. Their changes were made to the same object and were incompatible. For

example, one of them removed the object while the other one updated

an attribute of the same object. As a result, their changes cannot be

merged into a consolidated model.

2. They are able to merge their changes, but the merged model estimates

that the memory usage of the system at runtime will surpass the thresh-

old defined by the NGCA requirements.

The above scenario depicts examples of (1) a synchronization conflict and (2) a higher-

order conflict respectively. Those conflicts are defined as following [9]:

• A synchronization conflict is a set of design decisions made by multiple architects

that are not compatible and cannot be merged into a single, consolidated model. It

occurs when multiple software architects make contradictory modeling changes on

the same software modeling artifact or closely related artifacts. A synchronization

conflict is also called a context-free conflict [64]. It is similar to a textual conflict [14]

or a direct conflict [21,32,55,66] discussed in literature.

• A higher-order conflict is a set of design decisions made by multiple architects

that do not prevent synchronization but together violate a consistency rule or a

semantic rule of the system. In other words, a higher-order conflict manifests itself

as an inconsistency in the merged model. A higher-order conflict is also called a

18

context-sensitive conflict [64]. An analogous concept at the source code level [14] is

known as an indirect conflict [21,32,55,66].

A software model that is concurrently developed cannot realistically evolve without

having inconsistencies [5, 28]. At the same time, having an inconsistency caused by a

higher-order conflict that is undetected and unknown to the architects is a risk. For

example, when the two architects in our scenario discover the higher-order conflict, they

have to revisit their previous changes in order to understand and resolve the conflict,

recalling the rationale and assumptions they made along the way. Moreover, their work

performed after the conflict has been introduced may need to be reversed during the

process, which leads to wasted effort and increased development cost.

2.3 Conflict Detection Practice

Software architects, during collaborative design, use VCSs to synchronize their modeling

changes, and also to detect, comprehend, and resolve conflicts. This section describes in

which ways those behaviors are supported in today’s collaborative design environments.

2.3.1 Detecting Conflicts

Design conflicts are detected when modeling changes are merged. When an architect

tries to merge her changes, if there are synchronization conflicts, the merge fails, and

the VCS raises a flag. In case the merge succeeds (i.e., there are no synchronization

conflicts), the architect (or the VCS) would analyze the merged model and check whether

any consistency rule has been violated to detect higher-order conflicts.

19

While both commit and update activities trigger a merging of modeling changes, in

modern VCSs, conflicts can be detected only when an update is performed. Modern

VCSs often do not allow performing a commit when the base version of a working copy is

behind the head version. The rationale behind that is to prevent potential higher-order

conflicts to be transferred to the repository and propagated to the other architects. In

that case, the architect must perform an update first in order to become able to perform

a commit. After the update, and before eventually performing the commit, the architect

is also encouraged to detect and resolve any higher-order conflicts in her working copy.

2.3.2 Comprehending Conflicts

In order to resolve a design conflict, an architect needs to understand the causes of the

conflict first. Narrowing down which changes have caused the conflict and by which

architect those changes were made is a key to resolving the conflict. Obtaining this

knowledge, i.e., comprehending a conflict, is often not trivial since a large number of

changes could have been made by the time the conflict is detected, and it is possible that

most of those changes are not directly related to the cause of the conflict.

While comprehending a synchronization conflict is relatively straightforward, it is

often not as easy to comprehend a higher-order conflict. When a synchronization conflict

arises, most VCSs are indeed capable of automatically retrieving the list of modeling

changes that have been made to the part of the model in which the conflict occurred and

by which architects those changes are made to support the resolution process (e.g., as

in [8, 13, 38]). On the other hand, comprehending a higher-order conflicts often requires

manual inspection of the prior modeling changes. For example, in the scenario where

20

the joint changes made by the two architects violated the memory usage requirement

(recall Section 2.2), the architects would need to revisit their previous work, recalling

the decisions they made along the way in search for the set of modeling changes that

pushed the memory usage over the threshold. The process of performing such a manual

inspection and recollection is likely to be tedious, time-consuming, and error-prone. This

is especially a problem when the higher-order conflict is detected after a large number of

modeling changes have been made since the initial occurrence of the conflict.

2.4 Proactive Conflict Detection

To deal with the risk of having undetected higher-order conflicts (recall Section 2.2), one

solution would be for the architects to synchronize and detect the conflicts with a high

frequency, e.g., for every change that they make. However, the cost of conflict detection

in that case is likely to overwhelm its benefits. In today’s collaborative software design

environments, that is a trade-off decision that the architects have to make. The burden of

conflict detection grows further when the detection technique is computationally expen-

sive. While a few performance-oriented model analysis techniques are lightweight [24,47],

many other well-known techniques such as discrete-event simulation [56], Markov-chain-

based reliability analysis [65], or queueing-network-based performance analysis [4] are

often computation-intensive and time-consuming, rendering highly frequent conflict de-

tection less affordable, especially as the size of the system model grows.

A number of tools for collaborative implementation that proactively detect conflicts

have emerged [54] to minimize the analogous risk of having undetected conflicts at the

21

source code level. Those tools perform trial merging and conflict detection activities in

the background to detect conflicts early. This dissertation hypothesizes that a similar ap-

proach, when it is applied to collaborative design, will reduce the risk that architects face.

However, challenges exist in directly reusing the existing proactive conflict detection tools

for software design because these tools are constructed to manage code-level rather than

model-level changes and are often integrated into a specific development environment.

An added challenge is that different software modeling environments depend on their

unique combinations of modeling tool and consistency checkers, and any proactive conflict

detection solution should be able to cope with the differences. For example, revisiting

our scenario, the proactive conflict detection tool for NGCA should be able to (1) orches-

trate the NGCA-specific modeling tool and consistency checkers to automatically perform

the higher-order conflict detection activities in the background, (2) present conflict in-

formation specific to the environment (e.g., violations of the three runtime properties of

NGCA), as well as (3) synchronize the graphical modeling changes. Unfortunately, the

existing proactive conflict detection tools do not fully satisfy the above requirements.

22

Chapter 3

Solution

To alleviate the risk of having undetected higher-order design conflicts, this dissertation

proposes a novel collaborative software design framework, named Framework for Logging

and Analyzing Modeling Events (FLAME). FLAME minimizes the duration of time dur-

ing which the conflicts are present but unknown to software architects by proactively per-

forming the conflict detection activity that includes a trial merging of modeling changes

and execution of consistency checking tools in the background. FLAME subsequently

presents the conflict information to the architects in case their attention is required.

The rest of this chapter describes FLAME. The architecture of FLAME, including

how it is designed and how it differs from the existing proactive conflict detection tools,

is presented in Section 3.1. Section 3.2 discusses FLAME’s implementation.

23

3.1 The Architecture of FLAME

This section introduces the architecture of FLAME and the principal design decisions

made in the process of constructing the architecture. Section 3.1.1 overviews the high-

level architecture of FLAME—its primary components and the ways in which those com-

ponents interact with each other—designed to proactively detect conflicts at the model-

level. The remainder of this section describes how FLAME is designed in order to handle

the potentially large computation resource needs for the detection of conflicts (recall

Section 2.4). Section 3.1.2 is regarding how FLAME employs remote nodes to adopt

computation resources as needed, and Section 3.1.3 is regarding how FLAME priori-

tizes instances of conflict detection to minimize delay in delivering conflict information

to software architects that may be caused when computation resources are scarce.

3.1.1 Applying Proactive Conflict Detection to Software Design

FLAME is designed to overcome the challenges that arise when adopting the existing

proactive conflict detection tools for collaborative software design (recall Section 1.2).

FLAME has the following two characteristics that distinguish it from the existing tools.

First, FLAME is extensible. Software modeling environments differ in their modeling

tools, languages, and the suitable consistency checkers. FLAME utilizes an event-based

architecture in which highly-decoupled components exchange messages via implicit in-

vocation, allowing flexible system composition and adaptation. FLAME exploits this

event-based architecture to provide explicit extension points for plugging a variety of

off-the-shelf tools—namely, modeling tools and conflict detection engines—that are most

24

appropriate for the given modeling environment. Second, FLAME is operation-based.

Conflict detection can become more fine-grained if the version control is done by track-

ing modeling operations (i.e., actions such as creation, update, or removal of a modeling

element) rather than “diffs” between stored states of a model (e.g., saved files) [38]. The

operation-based version control is advantageous because an architect can find out which

particular operation that she performed has caused a conflict [12]. For each modeling

operation made, FLAME automatically performs trial synchronization and conflict de-

tection in the background in order to immediately detect newly arising conflicts. On the

other hand, performing conflict detection for each operation could be a significant, even

unacceptable tax on the system’s performance. FLAME deals with this explicitly, by

employing remote, cloud-based analysis nodes, as discussed later in this chapter.

FLAME adds higher-order proactive conflict detection on top of a conventional copy-

edit-merge collaborative design environment. Figure 3.1 depicts the high-level architec-

ture of FLAME. On the architect-side, FLAME attaches a modeling tool-specific adapter,

FLAME Adapter, to the modeling tool to capture each operation as it is made via the

modeling tool’s APIs. A FLAME Client is installed at each architect’s site to establish a

channel between the architect-side and the server-side through which the captured opera-

tions can be sent. For proactive conflict detection, each captured operation is immediately

forwarded from the FLAME Adapter, through the FLAME Client, to the server-side.

The server-side Client Manager, which manages the connections between the server-

side and FLAME Clients, receives the operation and forwards it to Detector Manager,

which subsequently replicates and broadcasts the operation to all connected Detection

Engines. A Detection Engine is similar to a FLAME Client in the way that it is connected

25

Detector-side

Architect-side
FL

AM
E

C
lie

nt

M
od

el
in

g
to

ol

FL
AM

E
Ad

ap
te

r

A
rc
hi
te
ct

Detector-side

Se
rv

er
-s

id
e

C
lie

nt
 M

an
ag

er
De

te
ct

or
 M

an
ag

er

De
te

ct
io

n
En

gi
ne

M
od

el
in

g
to

ol

FL
AM

E
Ad

ap
te

r

De
te

ct
io

n
En

gi
ne

M
od

el
in

g
to

ol

FL
AM

E
Ad

ap
te

r

Architect-side

FL
AM

E
C

lie
nt

M
od

el
in

g
to

ol

FL
AM

E
Ad

ap
te

r

A
rc
hi
te
ct

D
et

ec
tio

n
to

ol
D

et
ec

tio
n

to
ol

F
ig

u
re

3.
1:

H
ig

h
-l

ev
el

ar
ch

it
ec

tu
re

of
F

L
A

M
E

w
it

h
tw

o
ar

ch
it

ec
ts

an
d

tw
o

D
et

ec
ti

o
n

E
n

gi
n

es
.

T
h

e
gr

ay
p

ol
y
go

n
s

(F
L

A
M

E

A
d
a
p
te

rs
a
n

d
D

et
ec

ti
o
n

T
oo

ls
)

as
w

el
l

as
th

e
m

o
d

el
in

g
to

ol
ar

e
d

es
ig

n
en

v
ir

on
m

en
t-

sp
ec

ifi
c

co
m

p
on

en
ts

.

26

to an instance of the modeling tool with a local copy of the model internally, but a

Detection Engine does not have an architect using the modeling tool initiating operations.

Instead, it has an off-the-shelf conflict detection tool plugged into the modeling tool.

An instantiation of FLAME may have multiple Detection Engines, each of which has a

different conflict detection tool and may maintain a different version of the model.

When a Detection Engine receives an operation that has been broadcast by the De-

tector Manager, the Detection Engine applies the operation to its local copy of the model,

automatically invokes the conflict detection tool, and analyzes the outcome as an archi-

tect would do. The result of the analysis is then consolidated and delivered back to the

architects via FLAME in the reverse order to that described above, i.e., from the Detec-

tion Engine, via the server-side components Detector Manager and Client Manager, and

eventually to the architect-side FLAME Clients.

3.1.2 Scaling Conflict Detection

In order to offload the potentially resource-intensive computations necessary for higher-

order conflict detection from the architect-side or the server-side machines, FLAME em-

ploys remote nodes to perform the detection. If a computation-intensive type of conflict

detection (recall Section 2.4) were to be performed on an architect’s machine or on the

server for every modeling operation, it could overwhelm the machine and hamper the

design activity. FLAME therefore moves the burden to the Detection Engine.

FLAME can utilize more than one Detection Engine in concert to parallelize the

higher-order conflict detection. An architect may need to perform multiple conflict detec-

tion activities using several tools that implement different techniques (e.g., a combination

27

of static and dynamic analysis) or different instances of the same technique (e.g., relia-

bility and latency analysis via discrete event-based simulation [23]). FLAME distributes

these conflict detection activities to multiple remote nodes on a cloud. It instantiates

multiple Detection Engines, each of which is responsible for performing a single higher-

order conflict detection activity using the corresponding conflict detection tool. This

aspect of FLAME’s architecture allows different Detection Engines to be instantiated as

needed, possibly even at runtime. The network delay that is introduced by distributing

the conflict detection activities to multiple nodes is likely to be minimal and negligible,

especially if the conflict detection technique used employs time-consuming analysis.

While migrating the conflict detection to Detection Engine would prevent the architect-

side or the server-side machines from being resource-starved, there is another risk that

each Detection Engine may become a bottleneck in conflict detection when it is over-

whelmed by a large number of of simultaneous conflict detection instances to perform.

Suppose it takes a uniform amount of time t for a Detection Engine to complete pro-

cessing a single conflict detection instance. If the Detection Engine had n (where n > 1)

instances to process, whether it processes all of them simultaneously or one-by-one, at

least one of the instances could take longer than t (possibly n times), or in other words,

be delayed. Consequently, the delivery of the resulting conflict information to architects

would also be delayed, and that might eliminate the benefits of proactively detecting

conflicts. The risk of Detection Engines overwhelmed by a large amount of simultane-

ous conflict detection is real, and indeed, it was observed that many conflict detection

instances were delayed in an empirical study conducted using FLAME, which will be

28

presented later in this dissertation. Moreover, that risk is likely to worsen in practice

when the architect team’s size is larger and the model is larger in size or more complex.

FLAME explicitly deals with the delay in conflict detection by employing remote,

cloud-based nodes, or slave nodes, whose primary purpose is to perform conflict detection.

During a collaborative design session, in general, a Detection Engine iterates through

the following six steps: (1) receiving a modeling operation, (2) applying the received

operation to the local copy of the model the Detection Engine internally maintains, (3)

generating a representation (e.g., a saved model file) of the version of the model after the

application, (4) invoking the off-the-shelf conflict detection tool that the Detection Engine

integrates by feeding the representation into the conflict detection tool, (5) consolidating

the result of the detection, and (6) forwarding the consolidated result to the server-side.

The fourth step—invocation of the off-the-shelf conflict detection tool—may consume a

significant amount of computation resources and time (the remaining steps should only

require minimal resources and be completed in a nominal amount of time). The fourth

step, however, does not depend on the outcome of the prior iterations, once the model

representation that will be fed into the conflict detection tool has been generated. To

minimize the potential delay in conflict detection, FLAME can parallelize the fourth step

and further move the burden of conflict detection to the slave nodes.

Figure 3.2 depicts the FLAME instance that uses slave nodes for conflict detection.

This instance differs from the one depicted in Figure 3.1, in terms of the machines on which

it relies to perform the potentially resource-intensive conflict detection. The detector-side

of this FLAME instance has a component called Slave Manager , which manages a pool

of slave nodes. Slave nodes may join the pool on-the-fly by initiating a connection to the

29

Slave Manager , and the Slave Manager can asynchronously and simultaneously process

several conflict detection instances by deploying the instances on the slave nodes.

The detector-side components, Detection Engine and Slave Manager, of the FLAME

instance that uses slave nodes for conflict detection behave as depicted in Figure 3.3.

During a collaborative design session, in general, the Detection Engine iterates through

the following four steps instead: (1) receiving a modeling operation, (2) applying the

operation to the local copy of the model the Detection Engine internally maintains,

(3) generating a representation (e.g., a saved model file) of the post-application version

of the model, and (4) forwarding the generated representation to the Slave Manager .

The forwarded representation is then stored in Model Representation Queue in the Slave

Manager . The Slave Manager , meanwhile, waits for a slave node to become available.

When a slave node becomes available, the Slave Manager initiates a separate thread that

retrieves the oldest model representation in the Model Representation Queue, transfers

the representation to the recruited slave node, and has the slave node perform conflict

detection on the representation. The thread waits until the slave node completes the

detection and returns the result. The thread then releases the slave node, and consolidates

and forwards the result to the Detection Engine. As the final step of this process, the

Detection Engine forwards the consolidated conflict information to the server-side.

The extensible architecture of FLAME provides the elasticity necessary to adapt to

the varying amounts of computation resources needed for conflict detection. During

a collaborative design session, the number of simultaneous conflict detection instances

that a Slave Manager needs to handle may continuously change depending on factors

such as the number of software architects who are participating in the session, the rate

30

Architect-side
FL

AM
E

C
lie

nt

M
od

el
in

g
to

ol

FL
AM

E
Ad

ap
te

r

A
rc
hi
te
ct

Detector-side

Se
rv

er
-s

id
e

C
lie

nt
 M

an
ag

er
De

te
ct

or
 M

an
ag

er

C
lo

ud

Sl
av

e
po

ol

De
te

ct
io

n
En

gi
ne

M
od

el
in

g
to

ol

FL
AM

E
Ad

ap
te

r

Sl
av

e
M

an
ag

er

Detector-side

De
te

ct
io

n
En

gi
ne

M
od

el
in

g
to

ol

FL
AM

E
Ad

ap
te

r

Sl
av

e
M

an
ag

er

Sl
av

e
po

ol

C
lo

ud

Architect-side

FL
AM

E
C

lie
nt

M
od

el
in

g
to

ol

FL
AM

E
Ad

ap
te

r

A
rc
hi
te
ct

Sl
av

e
M

an
ag

er

de
pl

oy
s

co
nfl

ic
t

de
te

ct
io

n
on

sl

av
e

no
de

s

F
ig

u
re

3
.2

:
H

ig
h

-l
ev

el
ar

ch
it

ec
tu

re
of

F
L

A
M

E
th

at
u

se
s

sl
av

e
n

o
d

es
fo

r
co

n
fl

ic
t

d
et

ec
ti

on
.

31

D
et

ec
to

r-
si

de

Detection Engine

Modeling tool

FLAME Adapter

Slave Manager

Slave pool

Cloud

(2) Apply modeling operation
(3) Generate model representation

(4) Forward the
 representation
 to Slave
 Manager

R1

R1 R2 R3

Model Representation Queue

S1

(1) Recruit an
 available slave

(2) Pop the oldest model
 representation in the queue

(1) Receive modeling operation

S1
(3) Have the slave
 perform detection

R1(5) Consolidate the
 result & send it to
 Detection Engine

(5) Send conflict information
Legend

Detection Engine

Slave Manager

Model representation

Conflict detection result

Slave node

Connection to the server-side

(4) Release
 the slave

Figure 3.3: A model of detector-side that uses slave nodes for conflict detection.

32

at which those architects are generating modeling operations, the amount of time for

a slave node to complete processing each conflict detection instance, etc. Meanwhile,

at the Slave Manager , it is possible that some of the conflict detection instances are

delayed while waiting for a slave node to become available if the number of simultaneous

conflict detection instances exceeds the number of slave nodes in the pool. FLAME allows

increasing and decreasing the size of the slave node pool on-the-fly to address such change

in the number of slave nodes needed. Furthermore, integration of a cloud into FLAME as

the platform on which the slave nodes run would make the resizing of the slave node pool

easier since a cloud can provide varying amounts of computation resources on-demand [3].

3.1.3 Prioritizing Conflict Detection

In practice, the available computation resources for conflict detection are likely to be

limited, and the Slave Manager may have fewer than the desired number of slave nodes in

the pool. Figure 3.4 depicts an example scenario with five conflict detection instances. O1

through O5 are modeling operations that arrive in that chronological order in a Detection

Engine. The Detection Engine, for each of those modeling operations, generates a model

representation R1 through R5 respectively after applying the operation to its local model.

Suppose that the available computation resources for conflict detection are limited, and

the Slave Manager can only have a single slave node at its disposal. The Detection Engine

would generate R1 as O1 arrives, then the Slave Manager would begin processing an

instance of conflict detection on R1 using its sole slave node. However, delay may occur if

the operations O2 through O5 arrive in the Detection Engine before the conflict detection

on R1 is complete. The corresponding model representations R2 through R5 would have

33

time

O1 O2 O3 O4 O5

O1

R1

O1

R2

O2

O1

R3

O2

O3

O1

R4

O2

O3

O4

O1

R5

O2

O3

O4

O5

Figure 3.4: O1 through O5 are modeling operations a Detection Engine receives, and
R1 through R5 are their corresponding representations of the versions of the model that
consist of those operations over time. The modeling operation in red (darker highlighting
in grayscale), O3, causes a higher-order design conflict with a previous modeling operation.

to wait in the Model Representation Queue until the slave node completes the on-going

detection and becomes available again. Moreover, for some of those representations, the

wait could be longer than just one conflict detection instance since there are several of

them in the queue while there is only one slave node.

In order to minimize the delay that may occur when the computation resources for

conflict detection are scarce, FLAME implements an algorithm that assigns higher priority

to the conflict detection instances with chronologically newer versions of the model such

that, when t is the longest time required to process a single detection instance with no

delay, any outstanding higher-order design conflict that had not already been resolved at

a given moment can be detected, at most, in the amount of time 2 · t from its creation.

34

The insight behind the algorithm is that a higher-order design conflict can also be

detected by performing conflict detection on a version of a model that is chronologically

later than the version of the model in which the conflict first appeared, unless the conflict

had already been resolved. A Detection Engine generates a model representation Ri

for each modeling operation Oi it receives. A model representation Rn+1 would then

represent a version of the model that has merged all modeling operations that the version

of the model that Rn represents had merged (i.e., O1 through On) as well as an additional

modeling operation, On+1. For any modeling operation Oi, a consistency rule violation

that was caused by Oi and that has not been resolved by the time a chronologically newer

modeling operation Oi+j (where j > 0) was introduced can be detected by performing

conflict detection on Ri+j . For example, in the scenario depicted in Figure 3.4, a modeling

operation O3, together with a previous modeling operation, violates a consistency rule,

causing a higher-order design conflict. While the versions of the model that R1 and R2

represent do not violate the consistency rule, the version that R3 represents, after merging

O3, does violate the rule and causes the conflict. The versions of the model that have

been generated after R3 (i.e., R4 and R5), can be in one of the following two states:

1. The model does not violate the consistency rule: For example, the modeling

operation that was applied after O3 had been applied, O4, counteracted to O3, and

the versions of the model that have merged O4 on top of O3 no longer violate the

consistency rule. In this case, it would not be as urgent to notify the architects

because the conflict has already been resolved.

35

2. The model does violate the consistency rule: Even after merging the mod-

eling operations that have been applied after O3 was applied, the consistency rule

violation persists. In this case, performing conflict detection on R4 or R5 would

detect the same consistency rule violation. Also, it will be necessary to notify the

architects so that they become aware of this outstanding conflict.

Figure 3.5 depicts the behavior of the detector-side components that implement the

algorithm. In case there is no available slave node at a given moment, a newly created

model representation will have to wait until a slave node completes performing its on-going

conflict detection and eventually becomes available. When a slave node becomes available,

the Slave Manager retrieves a model representation Rnewest that is chronologically the

newest among the ones in its Model Representation Queue and has the slave node perform

conflict detection on it. In this process, it will take, at most, the amount of time 2 · t

to detect any outstanding conflicts that exist in the version of the model that Rnewest

represents. That is because the wait time for Rnewest until a slave node becomes available

would be the amount of time t at most, and it would take another t at most for the slave

machine to complete performing the conflict detection on Rnewest.

It should be noted that this algorithm guarantees the upper bound in the number of

conflict detection instances that need to be performed until a higher-order design conflict

to be detected, but it does not guarantee the absolute amount of time that it may take

for the detection. The amount of time t, defined as the longest time required to process a

single detection instance with no delay, is the upper bound in chronological time for a slave

node to complete processing an instance of conflict detection on a version of the model.

36

D
et

ec
to

r-
si

de

Detection Engine

Modeling tool

FLAME Adapter

Slave Manager

Slave pool

Cloud

(2) Apply modeling operation
(3) Generate model representation

(4) Forward the
 representation
 to Slave
 Manager

R3

R1 R2 R3

Model Representation Queue

S1

(1) Recruit an
 available slave

(2) Pop the newest model
 representation in the queue

(1) Receive modeling operation

S1
(3) Have the slave
 perform detection

R3(5) Consolidate the
 result & send it to
 Detection Engine

(5) Send conflict information
Legend

Detection Engine

Slave Manager

Model representation

Conflict detection result

Slave node

Connection to the server-side

(4) Release
 the slave

✗

Figure 3.5: A model of detector-side that retrieves newest model representation first.

37

It is a variable that is affected by several factors such as (1) the size and complexity of the

model fed into the conflict detection tool and (2) the amount of available computation

resources on the slave node on which the conflict detection is processed.

This dissertation makes the assumption that the time duration t would not signifi-

cantly fluctuate at a given point during a collaborative design session, hence having 2 ·t as

the upper bound time for an outstanding higher-order design conflict to be detected will

be reasonable in practice. The reason for this assumption is two-fold. First, two model

representations generated by the same Detection Engine that are consecutive or close

in their generation order are likely not to significantly differ in their size and complex-

ity. A Detection Engine generates a model representation for each modeling operation it

receives. The difference between two consecutive model representations is only a single

additional modeling operation that the later representation has merged on top of the ear-

lier one. Second, the available computation resources for conflict detection on the slave

nodes are likely not to significantly differ. The cloud-based slave nodes can readily be

initialized to have similar or even identical amounts of computation resources.

3.2 The Implementation of FLAME

This section introduces the implemented FLAME instance that has been developed in

order to evaluate whether and to what extent proactive conflict detection may impact

the cost of collaborative software design. The rest of the section is organized as follows.

It begins with describing the primary components in the implementation and how those

components interact with each other in Section 3.2.1. In Section 3.2.2, FLAME’s unique

38

way of operation-based version control that enables proactive detection of design con-

flicts is described. Lastly, in Section 3.2.3, the two Detection Engines developed for this

FLAME instance that derive different versions of a software model for proactive conflict

detection are introduced and compared with one another.

3.2.1 Primary Components

Figure 3.6 depicts the detailed, as-implemented architecture of FLAME. The implemented

FLAME instance integrates the following three off-the-shelf software tools,

1. GME [37]: A configurable tool for domain-specific software modeling,

2. XTEAM [23]: A model-driven design, analysis, and synthesis tool-chain, and

3. Prism-MW [41]: An event-based middleware platform.

FLAME integrates those off-the-shelf tools to provide proactive conflict detection to

software architects. GME allows architects to create a domain-specific modeling notation

(e.g., for the Next-Generation Climate Architecture in the scenario from Section 2.2)

in which the architects can specify different aspects of the target system. An architect

modeling in FLAME uses GME to specify the structure of the system by creating a set

of components, connectors, and the connections between them. She then specifies, for

each component and connector, (1) how it stores data, (2) how it behaves and reacts to

different events, (3) on which physical host it is deployed, and (4) other characteristics in

the form of property lists. Each modeling operation the architect makes along the way

is captured by the FLAME Adapter that immediately transfers the operation, through

the server-side FLAME components, to Detection Engines, via Prism-MW. Prism-MW

establishes event-based interaction channels for the transfer of the operations in FLAME.

39

Architect(side

GME$model$access$API

Architect

Server(side

FL
AM

E&
Se
rv
er

Client$Manager$Connector

User$Auth User$DBOpera=ons
Storage

Conflicts
Storage

Detector$Manager$Connector

GME$(modeling$tool)

FL
AM

E&
Cl
ie
nt

FLAME$GUI

FLAME$Client$Connector

Event$Queues

FL
AM

E&
Ad

ap
te
r

Event$Listener

FLAME$Adapter$Connector

Update$Handler

Detector(side

GME$model$access$API

GME$(modeling$tool)

De
te
c5
on

&E
ng
in
e

FLAME$Client$Connector

FL
AM

E&
Ad

ap
te
r

Event$Listener

FLAME$Adapter$Connector

Update$Handler

XTEAM$Analysis$Engine$(detec=on$tool)

Event$Queues

Legend
Modeling operations

Sync. activities

Login information

Conflict information

Figure 3.6: Detailed architecture of FLAME. The double-lined polygons are the

off-the-shelf, domain-specific software systems integrated into FLAME.

40

When a Detection Engine receives an operation, it applies the operation to its local

model and invokes XTEAM to analyze the model and estimate one or more runtime

properties of the modeled system such as memory usage (as in [23]), energy consumption

(as in [58]), and message latency (as in [67]). The model analysis result produced by

XTEAM is raw and needs to be consolidated since it could distract the architects if

provided as-is. For example, the memory usage estimation outputs a simple but large

memory usage log for each component and connector of the target system during the

runtime simulation execution. The Detection Engine responsible for the memory usage

estimation consolidates the result by computing the statistics necessary to determine

whether a consistency rule regarding the memory usage has been violated, and forwards it

to FLAME Clients, where the result is processed further before being eventually presented

to an architect, as described below.

FLAME provides an extension point at which a customized GUI capable of presenting

the domain-specific conflict information can be plugged-in. To be used with the current

FLAME instances, as a proof-of-concept, a small GUI has been implemented in order to

minimize the obtrusiveness while continuously delivering proactive conflict information

to the architects. The GUI uses color coding to indicate the presence of a higher-order

design conflict. For example, recalling the NGCA scenario from Section 2.2, the GUI

in Figure 3.7 changes the color of the “Memory” indicator from green to red (darker

highlighting in grayscale) if the estimation surpasses the stated threshold.

41

(a
)

A
n

a
rc

h
it

ec
t’

s
sc

re
en

w
it

h
th

e
F

L
A

M
E

G
U

I.

(b
)

A
ll

p
ro

p
er

ty
re

q
u
ir

em
en

ts
a
re

sa
ti

sfi
ed

.

(c
)

T
h
e

m
em

o
ry

re
q
u
ir

em
en

t
is

n
o
t

sa
ti

sfi
ed

.

F
ig

u
re

3.
7:

T
h

e
si

m
p

le
F

L
A

M
E

G
U

I
fo

r
N

G
C

A
.

42

3.2.2 Version Control in FLAME

FLAME synchronizes modeling operations that software architects perform in real time,

i.e., as the operations are performed. This real time synchronization of operations is

beneficial since it enables (1) proactively performing higher-order design conflict detection

per-operation and also (2) integrating Detection Engines that derive various versions of

the model without any modification made to the server-side of FLAME. The rest of this

section describes how FLAME implements this operation-based version control.

When FLAME transfers modeling operations between its components, it uses Design

Events, each of which encapsulates a single operation. A Design Event , in addition to

the operation, carries the identification of the architect who performed the operation

and a counter that represents how many prior Design Events had been created by the

same architect. FLAME also treats version control activities (i.e., commit and update)

in a similar way. It creates, for each version control activity performed, a Design Event

that encapsulates the activity with the same two properties. Those Design Events are

transferred from FLAME Clients to the FLAME Server , and when the FLAME Server

receives the Design Events, it automatically broadcasts the Design Events to the rest

of the FLAME Clients and Detection Engines. In this manner, all FLAME Clients and

Detection Engines will eventually have the same set of Design Events locally.

FLAME implements version control by adjusting when the FLAME Clients and De-

tection Engines apply the received Design Events to their local models. When a FLAME

Client or a Detection Engine receives a Design Event , the Design Event is not always

immediately applied to the local model. Instead, the Design Event is first put into the

43

Event Queues (recall Figure 3.6) of the component. The Event Queues is a group of

queues, each of which stores the list of Design Events from an architect. Later, the De-

sign Events in the Event Queues are applied to the local models but in different ways

depending on whether the component is a FLAME Client or a Detection Engine, and

in case the component is a Detection Engine, depending on which version of the model

the Detection Engine derives for proactive conflict detection. A FLAME Client applies

the Design Events in the Event Queues to its local model when the architect interacting

with the FLAME Client requests to perform an “update” activity. Upon the request,

the FLAME Client retrieves, from each queue in the Event Queues, the list of Design

Events that had been made prior to the latest “commit” Design Event in that queue.

The FLAME Client subsequently applies the retrieved lists of Design Events to its local

model. On the other hand, since Detection Engines do not interact with an architect like

a FLAME Client does, each Detection Engine has its own policy that decides when and

which Design Events to apply to its local model, as introduced in the following section.

3.2.3 Detection Engines

In order to evaluate FLAME, two Detection Engines that derive different versions of a

software model have been developed. Because they perform proactive conflict detection

on different versions of the model, software architects can gain different kinds of awareness

from the conflict information each of those Detection Engines provides. The details of

the two implemented Detection Engines are as follows:

• The Global Engine derives and performs proactive conflict detection on the version

of the model that consists of all modeling operations that have been made up to a

44

given moment in time regardless whether the operations have been committed or

not. It provides the awareness of what conflicts may arise if every architect performs

a commit at that moment. Because the Global Engine merges all operations across

architects, only a single instance of it is necessary for a team of software architects.

• The Head-and-Local Engine, for each architect, derives and performs conflict de-

tection on the version of the model that is based on the head version and merges

the modeling operations in her working copy that have not been committed up to a

given moment. It provides the awareness of what conflicts may arise if the architect

performs an update at that moment. Because every architect has her own working

copy, an instance of Head-and-Local Engine for each software architect is necessary.

The implementations of the two Detection Engines do not differ significantly other

than their policies in the application of Design Events to local models. Figure 3.8 shows

the simplified policies of the Detection Engines. When a Detection Engine receives a De-

sign Event via the channel that Prism-MW establishes, Prism-MW automatically invokes

the handle() function and passes the incoming Design Event as the argument (Line 2).

The Detection Engine subsequently puts (adds) the Design Event into the Event Queues

(Line 4), and invokes an appropriate function that retrieves Design Events from the Event

Queues depending on whether it is a Global Engine or a Head-and-Local Engine. The

Detection Engine then applies the retrieved Design Events to its local model (Lines 9 and

13). In case the Detection Engine is a Global Engine, the Design Event retrieval func-

tion returns all Design Events in the Event Queues (Lines 19–27). In case the Detection

Engine is a Head-and-Local Engine, the retrieval function returns (1) all Design Events

45

from the queue that stores Design Events from the architect to which the Head-and-Local

Engine corresponds, and (2) from each of the rest of the queues, the Design Events that

had been created prior to the latest “commit” Design Event in that queue (Lines 30–44).

No additional modifications to the other parts of FLAME are necessary other than these

Design Events application policies to implement the two Detection Engines, or any other

potential Detection Engines that derive a different version of the model, because of the

way FLAME synchronizes modeling operations in which all Detection Engines maintain

the same set of modeling operations, as described in Section 3.2.2.

The Global Engine and Head-and-Local Engine introduce certain trade-offs. In gen-

eral, the Global Engine detects conflicts earlier than the Head-and-Local Engine while

the Head-and-Local Engine reports fewer benign conflicts (these can be thought of as

false positives) than the Global Engine. Consider a scenario with two architects design-

ing a system as a team. They each perform a modeling operation that jointly cause a

higher-order design conflict. Those operations are then immediately transferred from the

FLAME Clients to the Detection Engine. If the architects were using FLAME with the

Global Engine, the conflict would be detected as soon as the operations are transferred

to the Global Engine. On the other hand, if the Head-and-Local Engines were used, the

conflict would not be detected until one of the operations is committed, and the conflict

might be unknown to the architects for a longer period of time. Another possibility is

that the conflict is benign, i.e., it has already been resolved before the operations that

caused it were committed. In that case, if the Global Engine were used, it would report

the conflict that would eventually be resolved even without the architects’ attention, and

46

the design activity may unnecessarily be disturbed as a result. The conflict information

from the two Detection Engines will, therefore, ultimately complement each other.

47

1 // handles an incoming Design Event

2 void handle (Event event) {

3 // adds the Design Event to the Event Queues

4 eventQueues.add(event);

5
6 // applies the Design Events differently

7 switch(engineMode) {

8 case "Global":

9 apply_events_to_local_model(retrieve_events_global ());

10 break;

11
12 case "HeadAndLocal":

13 apply_events_to_local_model(retrieve_events_headlocal ());

14 break;

15 }

16 }

17
18 // Retrieves all Design Events , whether or not committed

19 EventArray retrieve_events_global () {

20 EventArray eventsToApply;

21 for(Queue queue : eventQueues) {

22 for(Event event : queue) {

23 eventsToApply.add(event);

24 }

25 }

26 return sort_chronological(eventsToApply);

27 }

28
29 // Retrieves all committed Design Events and uncommitted Design

Events from the corresponding architect

30 EventArray retrieve_events_headlocal () {

31 EventArray eventsToApply;

32 for(Queue queue : eventQueues) {

33 if(queue.get_username ().equals(correspondingUsername)) {

34 for(Event event : queue) {

35 eventsToApply.add(event);

36 }

37 } else {

38 for(int i=0; i < queue.find_latest_commit (); i++) {

39 eventsToApply.add(queue.get(i));

40 }

41 }

42 }

43 return sort_chronological(eventsToApply);

44 }

Figure 3.8: Design Events retrieval from Event Queues in Detection Engines.

48

Chapter 4

Evaluation

The Framework for Logging and Analyzing Modeling Events, FLAME, has been designed

and developed according to the two hypotheses introduced in Section 1.3. This chapter

presents the empirical and systematic evaluation of FLAME as a way of testing the

two hypotheses. The rest of the chapter is organized as follows. In Section 4.1, the

results from the two user studies that were conducted with total of 90 participants are

presented. The focus of that section is to test Hypothesis 1, regarding whether and to

what extent the proactive conflict detection that FLAME provides would impact the cost

of collaborative software design. Then in Section 4.2, the results from the systematic

evaluations of FLAME with regards to its scalability and performance are presented.

In particular, Section 4.2 tests Hypothesis 2, which deals with prioritization of conflict

detection instances in order to guarantee the worst-case time to detect an outstanding

conflict when available computation resources are scarce (recall Section 3.1.3).

49

4.1 Empirical Evaluation

This section presents the designs, the executions, and the results of two user studies

conducted using FLAME, with the primary goals to assess (1) how much earlier higher-

order design conflicts can be detected and resolved by implementing proactive conflict

detection as opposed to solutions that rely on the traditional on-demand merging of

models, and (2) whether and to what extent providing proactive conflict detection impacts

the quality of the software model. Each of the two studies evaluated one of the two

Detection Engines introduced in Section 3.2.3, i.e., the Global Engine and the Head-and-

Local Engine. The rest of this section is organized as follows. Section 4.1.1 details how

the two user studies were designed and discusses the differences between the two. After

that, Section 4.1.2 and Section 4.1.3 present the findings, insights, and implications from

the Global Engine user study and the Head-and-Local Engine user study, respectively.

Lastly, in Section 4.1.4, the known threats to validity of the user studies are discussed.

4.1.1 Study Setup

Sharing the same primary goals, the two user studies were designed in a similar way but

with some differences (listed in Table 4.1). In both studies, the participants were divided

into two groups, each of which performed collaborative design tasks with and without

proactive conflict detection. Then the results from the groups were compared in order to

determine in which ways providing proactive conflict detection affected the collaborative

design. By using FLAME for both groups—those that did and those that did not present

50

Table 4.1: FLAME User Studies Comparison.

User Study Global Head-and-Local

Target system NGCA (Section 2.2) BOINC [63]

Number of participants 42 48

Number of teams 21 teams of 2 24 teams of 2

User study period Span of 18 days Span of 12 days

Detection Engine of choice Global Engine Head-and-Local Engine

the proactive conflict detection results—it was possible to track the participants’ collabo-

rative design activities at the level of each modeling operation as well as the higher-order

conflicts from their creation, to detection, and eventually to resolution for both groups.

To compare the collaborative design cost with and without proactive conflict detection,

in both studies, the cost was estimated by controlling the extent of time the architects

spent performing collaborative design activities and measuring the resulting model’s qual-

ity upon the completion of the design task. Granular variables were derived to observe

participants’ collaborative design behavior and to measure the resulting models’ quality

as shown in Table 4.2 and Table 4.3, which will be discussed in detail later in this chapter.

Both of the user studies were designed based on the design documents of real software

systems. We selected open-source systems that have their design documents open to

public. Based on those design documents, collaborative design scenarios where higher-

order conflicts arise were recreated. The target system chosen for the Global Engine

user study was the Next-Generation Climate Architecture (NGCA) that had the three

essential, runtime system properties, i.e., memory usage, message latency, and energy

consumption (recall Section 2.2). For the Head-and-Local Engine user study, the Berkeley

51

Open Infrastructure for Network Computing (BOINC, depicted in Figure 4.1) [63], an

open-source system for volunteer-computing and grid-computing, was chosen as the target

system. A comparable design scenario with the same three runtime system properties

was created using BOINC, which in turn, enabled the use of the same model analysis tool

(i.e., XTEAM [23]) as the conflict detection tool in both user studies.

The participants in the Global Engine and Head-and-Local Engine user studies were 42

and 48 students respectively, enrolled in the graduate-level Software Architecture class at

the University of Southern California. No participant had prior experience with FLAME

or their target systems (NGCA or BOINC). The participants spent four weeks performing

two software design assignments using the NGCA- or BOINC-specific modeling environ-

ment and FLAME’s constituent XTEAM subsystem in order to get familiar with its

simulation-based analyses prior to the user studies. This resulted in comparable familiar-

ity of each participant with the modeling environment and the target system domain [20].

The participants were grouped into 21 and 24 teams of two in the two respective

studies. The teams were then divided into two groups by their team numbers (odd and

even number teams; team numbers were randomly assigned): (1) the control group that

used FLAME in the mode that does not present the proactive conflict detection results

to simulate the behavior of a current generation software model VCS (“w/o PCD” in

Table 4.2 and Table 4.3) and (2) the experimental group that used FLAME in the mode

that does present the proactive conflict detection results (“w/ PCD” in Table 4.2 and

Table 4.3). In each of the user studies, a survey was conducted regarding the participants’

industry experience to assess their prior exposure to collaborative design, but no evidence

was found that the prior industry experience of the two groups differed significantly.

52

F
ig

u
re

4.
1:

A
h

ig
h

-l
ev

el
m

o
d

el
of

B
O

IN
C

.

53

Each team participated in a 2-hour-long session during a span of 18 days and 12 days

in the Global Engine and Head-and-Local Engine user studies, respectively. The author

of this dissertation administered all of the sessions (21 and 24 sessions in the two studies,

respectively) during which he was physically present close to the participants, monitor-

ing and observing them. Each session was divided into three smaller sessions: (1) the

1-hour-long FLAME tutorial, (2) the main, 30-minute-long design session during which

the participants’ design activities were recorded, and (3) the subsequent 30-minute-long

design session for the participants to experience the alternative mode of FLAME. For

example, if a participant used FLAME in the mode that presents the proactive conflict

detection results in her main design session, she would use FLAME in the mode that does

not present the results in her alternative-mode session, and vice versa. The rationale be-

hind conducting the two sessions was for the participants to experience both modes of

FLAME, with and without proactive conflict detection, and to collect their preferences

and assessment of the differences they experienced between the two modes. The de-

sign activity during the alternative-mode session was not recorded since the participants’

behavior in that session may have been influenced by having undergone the main session.

During the design sessions, each team was given a partially complete model of the

target system—NGCA or BOINC—and assigned with design tasks to replace a set of

components in the model, as well as a set of three system requirements regarding the three

runtime system properties to satisfy (design task samples are in Appendix A). The two

participants in each team were directed to make trade-off design decisions corresponding

to two different non-overlapping parts of the model in order to avoid synchronization

conflicts. The given tasks were designed in a way that the participants, in the course of

54

Architect 1 Architect 2

Architect-side Architect-side

Server-side

Detector-side
(Global Engine)

(a) The Global Engine user study.

Architect 1 Architect 2

Architect-side Architect-side

Server-side

Detector-side
(Head-and-Local Engine 1)

Detector-side
(Head-and-Local Engine 2)

(b) The Head-and-Local Engine user study.

Figure 4.2: Detector-side configurations in the two user studies.

decision making, could violate two of the system requirements: energy consumption and

memory usage. The third requirement, message latency, was not designed to be violated.

The biggest difference between the two user studies was that the participants used dif-

ferent Detection Engines in each study, as depicted in Figure 4.2. Recalling Section 3.2.3,

when the Global Engine is to be used in FLAME, only one instance of the Global Engine

is necessary that maintains the version of the model that consists of modeling operations

from all architects. On the other hand, when the Head-and-Local Engine is to be used,

one instance of the Head-and-Local Engine for each architect is necessary that maintains

the version of the model that is based on the head version and merges the local changes

from that architect. In the Head-and-Local Engine user study, each team used FLAME

with two instances of Head-and-Local Engines, one per architect in the team.

55

Also, in both studies, the communication between the two participants in each team

was restricted to online communication media during the sessions to reproduce the com-

munication challenges of geographically distributed collaborative software design. For

example, the two participants were not allowed to speak with each other but had to

initiate an email thread or use an instant messenger in order to discuss their conflict

resolution strategy.

4.1.2 The Global Engine User Study Result

This section presents the analyses on the Global Engine user study data by addressing

three research questions derived from the primary goals defined earlier in this chapter.

Q1: Did FLAME with Global Engine affect the amount of time architects

spend in design activities? The top portion of Table 4.2 shows the frequency of

design activities (DV01-DV03) performed during the main design sessions. During the

same length of time (CV01; 30 minutes), the frequency of design activities differed sig-

nificantly between the two groups of participants. Specifically, the group with proactive

conflict detection (1) performed a higher number of modeling operations (t-test; p-value

of 0.078) and (2) communicated more frequently (t-test; p-value of 0.064), and while

not significantly, (3) performed synchronization activities more often. The increase in

the number of performed operations can be explained by the increase in the confidence

of participants in making new changes. Fear of conflicts [14] could make an architect

take additional care when she performs new operations. The following quote is from a

participant, which aligns with this reasoning: “our confidence that the combined design

would meet the requirements was much higher when using proactive conflict detection.”

56

The increase in communication frequency aligns with a previous empirical study in which

a similar phenomenon was observed for detection and resolution of higher-order conflicts

in collaborative software implementation [53]. The group of participants with proactive

conflict detection was immediately notified by FLAME as each new conflict arose, hence

it was natural for them to initiate communication between the team members more often.

One of the participants responded about how the increased amount of communication

helped her team by saying: “I prefer the proactive environment because my teammate and

I completed the task on time as we had enough communication.”

Q2: Did FLAME with Global Engine facilitate the way architects detect

and resolve higher-order design conflicts? The middle portion of Table 4.2 shows

the number of conflicts that occurred and how long they lasted during the design sessions

(DV04-DV07). While the group of participants with proactive conflict detection dealt

with a higher number of conflicts on average, no conflict was left at the last commit nor

at the end of session (DV05-DV06), and the average lifetime of the conflicts, from when

they are introduced to when they are resolved, was significantly shorter (DV07). These

results also corroborate those reported in the previous research conducted at the code-

level [32,53]. The following quotes from the participants further explain our observation:

“It was quicker and easier to detect conflicts and fix them immediately.” and “[FLAME

was] making it easier to identify errors and fix them before further changes are made.”

Some conflicts took longer than the others to detect and resolve, and the group of

participants with proactive conflict detection resolved those hard conflicts significantly

earlier than the group without. Some conflicts may be easier to resolve, possibly because

they are already known to the architects before they are explicitly detected. Indeed, the

57

0
50

0
1,

00
0

1,
50

0
Li

fe
tim

e
(s

ec
on

ds
)

w/o PCD
Mean: 915.40 secs

Median: 912.00 secs

w/ PCD
Mean: 484.45 secs

Median: 539.00 secs

Figure 4.3: Lifetime of higher-order conflicts in the Global Engine user study.

lifetimes of 27% of the conflicts were shorter than 100 seconds while the mean lifetime of

the rest of the conflicts was much higher at 619.13 seconds. Figure 4.3 presents box plots

of the lifetimes of the conflicts that took longer than 100 seconds to resolve, with and

without proactive conflict detection (w/o PCD and w/ PCD respectively in the figure).

The median in the w/o PCD mode, 912 seconds, was significantly higher than the median

in the w/ PCD mode, 539 seconds (Mann-Whitney-Wilcoxon test; p-value of 0.036).

Q3: Did FLAME with Global Engine affect the quality of the resulting

model? The bottom portion of Table 4.2 shows the two factors (DV08-DV09) that was

used to estimate the quality of the resulting model in addition to the number of unresolved

conflicts (DV05-DV06). The participants were assigned with design tasks to modify the

58

system in a way that would maximize the throughput of the system, which subsequently

results in higher energy consumption and memory usage. The variations of those two

factors from the beginning to the end of each collaborative design session were tracked,

and the maximum values of the factors that each team reached during the session were

recorded. It was observed that the group of participants with proactive conflict detection

was able to design, on average, NGCA systems with higher throughput while leaving

fewer unresolved conflicts than the group without proactive conflict detection, in the

same amount of time (CV01). The increased number of operations (as shown in Q1)

can be seen as evidence of participants’ higher productivity. The following is a quote

from a participant that can show the link between the number of operations and the

participants’ productivity: “[FLAME] increased productivity as we were able to try more

combinations [of modeling operations] in same amount of time.” The reduced effort in

higher-order conflict resolution (as shown in Q2) could also have contributed in the higher

productivity. The following quotes from the participants corroborate this conclusion: “...

proactive conflict detection drastically minimizes the integration effort.” and “[FLAME]

shows my partner and me any conflicts that we have without running the simulation as

much as we did with the one without proactive [conflict detection].” In fact, the teams

in this user study that performed a higher number of modeling operations during their

sessions did achieve higher throughput of the system (univariate linear regression; energy

consumption, p-value of 0.060, R2 of 0.174 / memory usage, p-value of 0.088, R2 of 0.146).

59

Table 4.2: Global Engine User Study: Variables.

Collaborative Design Activities and Conflicts w/o PCD w/ PCD

Q1 CV01: Duration (mins) of modeling session per team 30.00 30.00

DV01: Number of modeling operations made per team 48.18 60.80

DV02: Number of communication activities per team 11.00 19.50

DV03: Number of synchronizations per team 6.18 8.00

Q2 DV04: Detected conflicts at synchronizations per team 1.27 2.40

DV05: Teams with unresolved conflicts at last commit 3 of 11 0 of 10

DV06: Teams with unresolved conflicts at session end 3 of 11 0 of 10

DV07: Lifetime (secs) of a higher-order conflict 671.00 363.40

Resulting Model Quality; the Higher is Better w/o PCD w/ PCD

Q3 DV08: Throughput factor: energy consumption (J) 8.18 M 8.55 M

DV09: Throughput factor: memory usage (MB) 729.09 747.60

CV is a control variable, and DV is a dependent variable. PCD stands for proactive conflict detection.
All values were rounded off at the third decimal.

4.1.3 The Head-and-Local Engine User Study Result

This section presents the Head-and-Local Engine user study data by addressing the same

three research questions derived and addressed for the Global Engine user study data.

Q1: Did FLAME with Head-and-Local Engines affect the amount of time

architects spend in design activities? The top portion of Table 4.3 shows the fre-

quency of design activities (DV01-DV03) performed during the main design sessions.

While different Detection Engines were used, the result generally corroborated that from

the Global Engine user study. The group of participants with proactive conflict detec-

tion (1) performed higher numbers of modeling operations (t-test; p-value of 0.031), and

60

while not significantly, (2) communicated more frequently, and (3) performed synchro-

nization activities more often than the group without proactive conflict detection, in the

same amount of time. The increase in the number of operations performed can be ex-

plained with the increase in the participants’ confidence in performing the operations, as

previously discussed in the Global Engine user study. The following quotes from the par-

ticipants support that reasoning: “[FLAME provided] the ease of committing the model

without much effort as I was assured that the color flags would show if my model, on up-

date, was not going to violate any of the system requirements.” and “[Proactive conflict

detection] helps me focus more on the design and modeling rather than worrying about the

effect of a single change.” The following quote from another participant further explains

the fear of conflicts [14] (recall Section 3.2.3): “In the FLAME without proactive conflict

detection mode, deciding when to commit local changes to the VCS was a challenge. In

that mode, we were unaware of whether our changes made any conflict with the other

teammates’ change. So none of us wanted to commit a change which would cause the

merged model to violate requirements.”

Interestingly, the difference in the amount of communication (DV02) between the

groups of participants with and without proactive conflict detection was not as dramatic

as that of the Global Engine user study. This might be a result of the differences between

the two Detection Engines that provide different kinds of conflict awareness, and further

investigation will be required in order to understand the root cause of this phenomenon.

Q2: Did FLAME with Head-and-Local Engines facilitate the way archi-

tects detect and resolve the higher-order design conflicts? The middle portion

of Table 4.3 shows the observed variables related to conflicts (DV04-DV08). A noticeable

61

observation was that the group of participants with proactive conflict detection resolved

conflicts without synchronizing them (DV04-DV05) more often than the group without

proactive conflict detection. This is likely due to the kind of conflict awareness that the

Head-and-Local Engine provides. An architect who uses a Head-and-Local Engine is pro-

vided with the awareness of the outstanding conflicts in the version of model that is based

on the head version and merges the uncommitted modeling operations in her working copy

(recall Section 3.2.3). That means the architect can foresee whether her working copy

will have a certain conflict if she performs an update at a given moment. In case there

is a potential conflict, with that awareness provided, the architect may choose to resolve

the conflict even without performing an update. Another observation was that, similar to

that observed in the Global Engine user study, the group of participants with proactive

conflict detection (1) left fewer unresolved conflicts at session ends (DV06-DV07) and

(2) detected and resolved conflicts earlier (DV08). The following two quotes from the

participants further explain this observation: “With help of proactive conflict detection,

there will still be a need to revert [to resolve a conflict], but that will be to revert only that

change which caused higher order conflict.” and “We can see whether an individual’s

atomic step can produce a high-order conflict and quickly rollback that operation.”

Also, the average lifetime of the hard conflicts, which lasted for longer than 100 seconds

(recall Section 4.1.2), of the group of participants with proactive conflict detection was

significantly shorter, similar to the observation in the Global Engine user study. In

the Head-and-Local Engine user study, about 47% of the conflicts took less than 100

seconds to resolve while the rest of the conflicts had the average lifetime of 348.56 seconds.

Figure 4.4 presents box plots of the hard conflicts’ lifetimes, without and with proactive

62

0
20

0
40

0
60

0
80

0
Li

fe
tim

e
(s

ec
on

ds
)

w/o PCD
Mean: 500.00 secs

Median: 550.50 secs

w/ PCD
Mean: 257.70 secs

Median: 217.50 secs

Figure 4.4: Lifetime of higher-order conflicts in the Head-and-Local Engine user study.

conflict detection (w/o PCD and w/ PCD respectively in the figure). The median in the

w/o PCD mode, 550.50 seconds, was significantly higher than the median in the w/ PCD

mode, 217.50 seconds (Mann-Whitney-Wilcoxon test; p-value of 0.051).

Q3: Did FLAME with Head-and-Local Engines affect the quality of the

resulting model? The bottom portion of Table 4.3 shows the factor that was used to

estimate the quality of the resulting model (DV09) in addition to the number of unresolved

conflicts (DV06-DV07). The target system used in this user study, BOINC, is a system

that divides a large computation task into smaller subcomputations and performs them

remotely. The participants of this user study were assigned with design tasks to modify

the BOINC system model in a way that maximizes the number of the subcomputations

63

of identical complexity that BOINC can perform in the same amount of execution time,

which can be considered as achieving higher system performance. The result showed

that the group of participants with proactive conflict detection, in the same amount of

design time (CV01), was able to design better performing BOINC systems on average

(DV09) while leaving fewer unresolved conflicts in the models (DV06-DV07). This result

corroborates that of the Global Engine user study and has likely been affected by the

improved productivity of the participants since (1) the participants were able to focus

more on design rather than caring about conflict detection (as shown in Q1) and (2)

the conflict detection became easier as the conflicts were detected and resolved earlier

(as shown in Q2). The following response from one of the participants aligns with this

conclusion: “By comparison, [in the mode with proactive conflict detection] we have tried

more combinations of the options (modeling operations) than in the one without proactive

conflicts detection, and I think it means that our working efficiency has been improved.”

The teams in this user study that performed a higher number of modeling operations

during their sessions indeed achieved higher performance of the target system (univariate

linear regression; subcomputations completed, p-value of 0.038, R2 of 0.181).

The participants also responded that they preferred their experience in the mode with

proactive conflict detection and that the way FLAME presented the conflict information

was not distracting, in the post-session survey with five survey questions (SQ01-SQ05).

Table 4.4 shows the result of the survey, which was conducted only for the Head-and-

Local Engine user study. It is essential for a proactive conflict detection tool that its user

interface does not distract the on-going design activity or overwhelm the architects with

large amount of information. That is because it is possible that the conflict information

64

Table 4.3: Head-and-Local Engine User Study: Variables.

Collaborative Design Activities and Conflicts w/o PCD w/ PCD

Q1 CV01: Duration (mins) of modeling session per team 30.00 30.00

DV01: Number of modeling operations made per team 29.58 38.50

DV02: Number of communication activities per team 14.29 15.04

DV03: Number of synchronizations per team 5.33 7.25

Q2 DV04: Detected conflicts at synchronizations per team 2.50 0.92

DV05: Proportion of conflicts never “updated” to local 32% 56%

DV06: Proportion of unresolved conflicts at session end 52% 28%

DV07: Teams with unresolved conflicts at session end 4 of 12 2 of 12

DV08: Lifetime (secs) of a higher-order conflict 255.83 149.72

Resulting Model Quality; the Higher is Better w/o PCD w/ PCD

Q3 DV09: Performance factor: subcomputations completed 598.17 605.92

CV is a control variable, and DV is a dependent variable. PCD stands for proactive conflict detection.
All values were rounded off at the third decimal.

presented can be ignored by the architects in case the presentation is regarded as a

distraction, which hinders the benefits of proactive conflict detection.

In both of the user studies, the participants with proactive conflict detection were able

to produce higher quality models in the same amount of time, while the participants in

each study were provided with different kinds of conflict awareness by different Detection

Engines. This suggests that there may be other Detection Engines than the two Detection

Engines introduced in this dissertation that maintain a different version of the model and

that can also contribute in detecting and resolving higher-order design conflicts.

65

Table 4.4: Head-and-Local Engine User Study: Post-Session Survey.

Question Mean S.D.

SQ01: I preferred the FLAME mode with proactive conflict de-
tection more than without.

6.22 1.25

SQ02: FLAME’s proactive conflict detection helped me dealing
with design conflicts.

6.15 1.03

SQ03: It was difficult to understand the conflict detection infor-
mation that FLAME provided.

2.80 1.60

SQ04: Early detection of conflicts made the resolution easier. 6.07 0.88

SQ05: The FLAME GUI was distracting. 2.48 1.44

All values are on a 7-point Likert scale, where 1 is “strongly disagree” and 7 is “strongly agree”. The
values have been rounded off at the third decimal. S.D. denotes standard deviation.

4.1.4 Threats to Validity

As is commonly the case with controlled experiments, the two user studies have threats to

validity due to their design. First, the user studies were conducted with students. While

all students were graduate-level, their design behavior may not be identical to that of a

real-world practitioner. Second, the design tasks assigned to the participants were not

from actual projects. Instead, in order to recreate realistic collaborative design scenarios,

the tasks were based on the actual design documents of the target systems (NGCA and

BOINC). Third, the duration of observed design session per team was short (30 minutes),

which could have caused bias from low familiarity with the target system domain or the

model analysis framework (XTEAM). The bias was minimized by having the participants

perform multiple design assignments using the target system model and XTEAM over the

span of four weeks prior to their sessions. We also note that the higher-order conflicts may

persist even longer in design sessions of longer duration, which would only increase the

66

benefit of detecting them early. Last, the team size was small (two per team). In a bigger

team, it may become ambiguous which architects are directly involved in a higher-order

design conflict. This is a hard problem in general, and has not yet fully been answered.

Some aspects of the study execution were challenged by threats to validity. First, the

amount of time it takes a conflict detection tool to complete its consistency checking was

not varied, while in a real setting, it may influence the architects’ reaction to proactive

conflict detection. In the two studies, that conflict detection times were kept relatively

constant (38 and 37 seconds on average in the Global Engine and the Head-and-Local

Engine user studies respectively) in order to avoid introducing bias. Second, only a

single kind of analysis tools (i.e., XTEAM) was used in the user studies. In a real-world

setting, architects may work in a design environment using several kinds of consistency

checking tools. We tried to recreate a more realistic design environment by integrating

three XTEAM model analysis tools in FLAME.

4.2 Systematic Evaluation

This section presents the designs, the executions, and the results of the analytical evalua-

tions of FLAME with regards to (1) its scalability and performance and (2) its algorithm

that prioritizes conflict detection instances in order to minimize the delay that may occur

when the computation resources used for conflict detection are scarce. The rest of the

section is organized as follows. Section 4.2.1 reports the results of the two scalability- and

performance-related experiments conducted, each of which focuses on (1) the variations

in the times required to process conflict detection instances when a Detection Engine

67

has different numbers of slave nodes at its disposal and (2) the overhead of FLAME in

handling highly frequent conflict detection instances in a collaborative software design

scenario with more than two architects. Then, in Section 4.2.2, we present the results

of the experiment that evaluates FLAME’s conflict detection prioritization algorithm by

testing whether it guarantees delivering conflict information in the amount of time that

is at most 2 · t when the available computation resources for conflict detection are limited.

4.2.1 Scalability and Performance

Previously, Section 3.1.2 presented how a Detection Engine elastically adapts to the

varying needs for computation resources for proactive conflict detection by offloading the

detection to remote, slave nodes. FLAME’s Detection Engine, regardless of the version

of the model it maintains, is designed to be able to utilize slave nodes to reduce the

potential delay in processing conflict detection instances that may occur when there are

an overwhelming number of simultaneous instances to process. In order to evaluate

whether the delay actually reduces as the number of slave nodes increases, an experiment

was conducted that varies the number of slave nodes that a Detection Engine has at its

disposal and measures the amount time it takes to process a conflict detection instance.

In this experiment, the participants’ collaborative software design behavior that was

recorded during the Head-and-Local Engine user study—the modeling operation logs of

the 24 teams—was reused in order to collect more realistic data. For the purpose of

measuring the optimal conflict detection time with no delay, the time gaps between each

pair of modeling operations in those 24 logs were stretched to a length that would not

cause any delay, i.e., a length that guaranteed no new conflict detection instance would be

68

26
27

28
29

30
C

on
fli

ct
 d

et
ec

tio
n

tim
e

(s
ec

on
ds

)

0
10

20
30

40
50

Pe
rc

en
t

20 40 60 80 100 120 140
Conflict detection time (seconds)

Figure 4.5: Box plot and histogram of conflict detection time of the no-delay scenario.

Mean: 26.83 seconds. Median: 27 seconds. Maximum: 30 seconds.

initiated while another instance is being processed. The modified logs were then replayed

in (i.e., fed into) FLAME, configured with a Global Engine with one slave node. By doing

so, it was possible to measure the time it would have taken to process each of the conflict

detection instances from the 24 logs with no delay (depicted in Figure 4.5).

The “sufficient” number of slave nodes necessary to prevent causing delay in conflict

detection, n, was estimated by performing a retrospective analysis on the operation logs

from the Head-and-Local Engine user study. Given t as the longest conflict detection

time with no delay (e.g., 30 seconds in the Head-and-Local Engine user study; refer to

Figure 4.5), the number n can be determined by calculating the maximum number of

operations performed during the time spans of length t, each of which starts from when

its corresponding operation is performed. Figure 4.6 depicts an example scenario with

7 operations. In this scenario, t4 is the time span during which the maximum number

of operations is performed and also the largest number of slave nodes is necessary. The

estimated n for the Head-and-Local Engine user study by performing this analysis was

69

Time
1 2 3 4 5 6 7

t1
t2
t3
t4
t5
t6
t7

Time

1

2

3

No. of
slave
nodes

Figure 4.6: Estimating the “sufficient” number of slave nodes. Each circle on the time
line represents a modeling operation performed at that time. In this scenario, at least
three slave nodes would be necessary not to cause delay in conflict detection, during t4.

9. Note that this analysis is likely to overestimate n when the longest conflict detection

time is used for t. The estimated n was 8 when the median detection time (27 seconds;

refer to Figure 4.5) was used for t instead.

After having measured the optimal conflict detection time and estimated the sufficient

number of slave nodes, four configurations of FLAME with varying number of slave nodes

were created, and the resulting conflict detection times were compared with each other.

FLAME was configured to have a Global Engine with 2, 4, 8, or 12 slave nodes each,

instantiated with identical computation resources on Google Compute Engine [30]. In

70

each of the configurations, the original modeling operation logs of the 24 teams in the

Head-and-Local Engine user study were replayed. That enabled computing the actual

time that would have been needed to process each conflict detection instance if those

teams used FLAME with the Global Engine that utilizes the given number of slave nodes.

Figure 4.7 presents the experiment results showing that the maximum conflict detec-

tion time noticeably drops as the number of slave nodes involved in the detection increases

from 2 (133 seconds) to 4 (54 seconds), and then to 8 (32 seconds). However, the conflict

detection time did not noticeably change in the 12 slave node configuration compared to

the 8 slave node configuration. It is important to note that, by parallelizing processing

conflict detection instances, FLAME only minimizes the delay in conflict detection, i.e.,

the amount of time a conflict detection instance may have to wait in the Detection Engine

until a slave node becomes available to process the instance. FLAME does not reduce the

execution time of the consistency checking tool it invokes to detect higher-order conflicts.

That means involving a larger number of slave nodes in conflict detection will decrease

the conflict detection time only as long as there are delays in conflict detection. In other

words, involving more than a “sufficient” number of slave nodes would not further de-

crease the conflict detection time. The maximum conflict detection time in the 8 slave

node configuration (32 seconds) was already close to the optimal time (30 seconds, recall

Figure 4.5), so adding more nodes (from 8 to 12) did not further decrease that time.

Figure 4.7 confirms this reasoning. While Figure 4.7a and Figure 4.7b have long tails due

to the delayed conflict detection instances, Figure 4.7c and Figure 4.7d do not have the

tail. In order to fully realize the benefits of proactive conflict detection, it is essential for

the Detection Engine to have a sufficient number of slave nodes as its disposal to keep

71

the maximum conflict detection time low. However, since it is hard to foresee the rate

at which the architects may perform modeling operations at a given moment, ultimately,

the capability to automatically adjust the number of slave nodes on-the-fly is desirable.

Additionally, in order to evaluate whether FLAME can handle collaborative software

design scenarios with more than two architects, an experiment was conducted to measure

the potential overhead in processing conflict detection instances that may occur when a

Detection Engine processes a large number of simultaneous instances. As the size of the

architect team grows, it is likely that the number of modeling operations performed by

the team of architects in the same amount of time would also increase. In other words, the

rate at which the team performs modeling operations would increase. Since a Detection

Engine generates an instance of conflict detection for each modeling operation it applies to

the local model it maintains, that higher rate would result in an added number of conflict

detection instances for the Detection Engine needs to process in the same amount of

time. In that case, involving a higher number of slave nodes would be desirable to lessen

the delay in conflict detection that may occur. However, by having to manage a higher

number of slave nodes to process the increased number of conflict detection instances,

the Detection Engine may cause an additional amount of overhead in processing those

detection instances. Such overhead would lead to delay in conflict detection and result in

longer conflict detection times, hindering the benefits of proactively detecting conflicts.

In this experiment, the rate at which a large group of architects simultaneously per-

form modeling operations was simulated. 10 logs of modeling operations that represent

scenarios with 24 architects collaboratively updating the BOINC system model (recall

72

01020304050
Percent

20
40

60
80

10
0

12
0

14
0

C
on

fli
ct

 d
et

ec
tio

n
tim

e
(s

ec
on

ds
)

(a
)

U
si

n
g

2
sl

av
e

n
o
d
es

.
M

ea
n
:

36
.8

9
se

cs
.

M
a
x
.:

1
3
3

se
cs

.

01020304050
Percent

20
40

60
80

10
0

12
0

14
0

C
on

fli
ct

 d
et

ec
tio

n
tim

e
(s

ec
on

ds
)

(b
)

U
si

n
g

4
sl

av
e

n
o
d
es

.
M

ea
n
:

2
7
.4

9
se

cs
.

M
a
x
.:

54
se

cs
.

01020304050
Percent

20
40

60
80

10
0

12
0

14
0

C
on

fli
ct

 d
et

ec
tio

n
tim

e
(s

ec
on

ds
)

(c
)

U
si

n
g

8
sl

av
e

n
o
d
es

.
M

ea
n
:

27
.1

0
se

cs
.

M
a
x
.:

3
2

se
cs

.

01020304050
Percent

20
40

60
80

10
0

12
0

14
0

C
on

fli
ct

 d
et

ec
tio

n
tim

e
(s

ec
on

ds
)

(d
)

U
si

n
g

1
2

sl
av

e
n
o
d
es

.
M

ea
n
:

2
7
.4

6
se

cs
.

M
a
x
.:

3
1

se
cs

.

F
ig

u
re

4.
7:

H
is

to
gr

am
s

of
co

n
fl

ic
t

d
et

ec
ti

on
ti

m
e

u
si

n
g

va
ri

ou
s

n
u
m

b
er

s
of

sl
av

e
n

o
d

es
.

73

Figure 4.1) were generated by merging the modeling operation logs of 12 randomly se-

lected participant teams of the Head-and-Local Engine user study. It was not possible to

merge 12 teams’ logs into a single log as-is because the teams performed identical design

tasks on the same given model, hence the logs included modeling operations that were

overlapping and incompatible with each other. To address that issue, after the logs were

merged in a way that preserves the rate at which the 12 teams simultaneously perform

modeling operations, all modeling operations in the merged log were replaced with a

dummy modeling operation that does not overlap with each other but for which the De-

tection Engine would create a conflict detection instance, based on the assumption that

the complexity or the size of the model would not likely change significantly during a

short span of time (30 minutes, the duration of each design session in the Head-and-Local

Engine user study). Those logs were then replayed in FLAME that had a Global Engine

with 48 slave nodes, initiated to have identical computation resources on Google Compute

Engine. The resulting conflict detection times were measured and compared with those

of the scenarios with two architects, presented earlier in this section.

The 10 logs of modeling operations were generated in a way to best reflect the rate

at which a large team of software architects would perform modeling operations. First,

rather than artificially manipulated, the modeling operation logs were generated reusing

the collected collaborative design behavioral data from the Head-and-Local Engine user

study. It is important to note that the rate at which an architect performs modeling

operations would likely fluctuate. Because of that, it is possible that a higher number of

conflict detection instances may be initiated at a particular moment, and the available

74

computation resources for conflict detection may temporarily become insufficient, intro-

ducing delay in the detection. Figure 4.8 depicts at which points modeling operations

were performed during the design sessions in the Head-and-Local Engine user study. This

shows the natural variation in the rate at which modeling operations were performed.

The way the modeling operation logs for this experiment were generated preserved that

variation. Second, for each of the generated modeling operation logs, 12 teams’ logs were

merged to simulate the rate at which a “large” architect team would perform modeling

operations. While it is likely to differ across projects in practice, the proportion of archi-

tects in a large software development team is one out of ten [39]. Each of the generated

logs of modeling operations mimicked the rate at which a team of 24 architects simulta-

neously perform modeling operations, in a development team of 240. Figure 4.9 depicts

the generated logs. Each log in Figure 4.9 is much denser than the logs in Figure 4.8 and

preserves the variation in the rate at which modeling operations were performed.

Figure 4.10 presents the histogram of the conflict detection times from the replays

of the 10 generated modeling operation logs. While the number of conflict detection in-

stances processed and the number of slave nodes used by the Detection Engine were much

higher than those of the 2-architect scenarios presented earlier, the mean and the maxi-

mum conflict detection times did not significantly increase from the 2-architect scenarios

(recall Figure 4.7c and 4.7d). This provides evidence that the additional overhead that

FLAME adds when the size of the architect team increases is negligible as long as the

Detection Engine has a sufficient number of slave nodes at its disposal. In reality, how-

ever, the architect team’s size may impact the rate at which software architects perform

modeling operations as well as the size and the complexity of the model under design in

75

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

Te
am

 N
um

be
r

0 200 400 600 800 1000 1200 1400 1600 1800
Time from the beginning of design session (seconds)

Figure 4.8: Modeling operation logs from the Head-and-Local Engine user study.

Each × represents one modeling operation performed.

76

1
2

3
4

5
6

7
8

9
10

M
er

ge
d

lo
g

nu
m

be
r

0 200 400 600 800 1000 1200 1400 1600 1800
Time from beginning of design session (seconds)

Figure 4.9: 24-architect modeling operation logs, generated for this experiment.

Each × represents one modeling operation performed.

a way that leads to more needs in computation resources for detecting conflicts. Never-

theless, these threats can be mitigated by further increasing the number of slave nodes or

implementing an algorithm that processes the chronologically newest conflict detection

instance first in a Detection Engine (recall Section 3.1.3) as discussed below.

4.2.2 Setting a Bound on Conflict Detection Time

Section 3.1.3 presented FLAME’s algorithm that prioritizes processing conflict detection

instances in a way that gives higher priority to the chronologically newer instances to

minimize the delay that may occur when the computation resources for conflict detection

are scarce. The algorithm guarantees that any higher-order conflict outstanding at a

given moment will be detected in the amount of time 2 · t at most, where t is the longest

processing time for a single detection instance with no delay. In order to empirically

77

24
26

28
30

32
34

C
on

fli
ct

 d
et

ec
tio

n
tim

e
(s

ec
on

ds
)

0
10

20
30

40
50

Pe
rc

en
t

20 40 60 80 100 120 140
Conflitct detection time (seconds)

Figure 4.10: Box plot and histogram of conflict detection time of 24-architect scenarios.

10 scenarios combined. 48 slave nodes. Mean: 27.37 secs. Max.: 33 secs.

validate the algorithm to ensure it would not introduce any hidden costs when it is

adopted in practice, a systematic experiment was conducted that compares a pair of

identical FLAME configurations of which one does not (oldest-first) and the other does

(newest-first) implement the algorithm. Two comparisons were made: (1) between a pair

of configurations with one slave node and (2) between another pair with two slave nodes.

In each of the configurations, the modeling operation logs of the 24 teams of the Head-

and-Local Engine user study were replayed. All configurations had one Global Engine with

their respective number of slave nodes. It was previously shown in Section 4.2.1 that,

if the Head-and-Local Engine user study participants used a Global Engine with two

slave nodes, several conflict detection instances would have significantly been delayed.

Intuitively, if the participants used a Global Engine with only one slave node, the delay

would have only worsened. The delay, subsequently, could have increased the time-to-

detection of the conflicts, which hampers the benefits of proactive conflict detection. In

this experiment, each individual conflict was tracked from its creation to detection in

78

order to test whether implementing the prioritization algorithm would shorten the time-

to-detect of the conflict when computation resources for conflict detection are limited.

Figure 4.11 (1 slave node) and Figure 4.12 (2 slave nodes) present the experiment

results showing that, in the configurations that implement the prioritization algorithm

(the newest-first configurations), (1) the mean time-to-detection times of the conflicts

were significantly lower and (2) the maximum time-to-detection times were below the

amount of time 2 · t (where t is 30 seconds; recall Figure 4.5). The median time-to-

detection times were 48.10% (p-value of 0.000; Mann-Whitney-Wilcoxon test) and 22.86%

lower (p-value of 0.023; Mann-Whitney-Wilcoxon test) in the newest-first configurations

with 1 slave node and 2 slave nodes respectively. More importantly, in the newest-first

configurations, the maximum time-to-detection times fell below the amount of time 2 · t

(60 seconds); they were 53 and 43 seconds with 1 slave node and 2 slave nodes respectively.

Also, in a newest-first configuration, a conflict may be detected when a conflict detection

instance generated for a chronologically newer modeling operation than the operation

that caused the conflict has been processed (recall Section 3.1.3). Overall, 60.47% and

32.56% of the conflicts were detected that way, in the newest-first configurations with 1

slave node and 2 slave nodes respectively. Those reversals happened more often with 1

slave node because a higher number of conflict detection instances were delayed due to

the fewer computation resources available for conflict detection in that configuration.

79

01020304050
Percent

20
40

60
80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

Ti
m

e
to

 d
et

ec
t a

 c
on

fli
ct

 (s
ec

on
ds

)

(a
)

O
ld

es
t-

fi
rs

t
p
ri

o
ri

ti
za

ti
o
n
.

M
ea

n
:

9
2
.4

9
se

cs
.

M
ed

ia
n
:

7
7

se
cs

.
M

a
x
.:

2
6
7

se
cs

.

01020304050
Percent

20
40

60
80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

Ti
m

e
to

 d
et

ec
t a

 c
on

fli
ct

 (s
ec

on
ds

)

(b
)

N
ew

es
t-

fi
rs

t
p
ri

o
ri

ti
za

ti
o
n
.

M
ea

n
:

3
8
.6

7
se

cs
.

M
ed

ia
n
:

3
9

se
cs

.
M

a
x
.:

5
3

se
cs

.

F
ig

u
re

4
.1

1:
H

is
to

gr
am

s
o
f

co
n

fl
ic

t
ti

m
e-

to
-d

et
ec

ti
on

w
it

h
ol

d
es

t-
an

d
n

ew
es

t-
fi

rs
t

p
ri

or
it

iz
at

io
n

:
1

sl
av

e
n

o
d

e.

80

01020304050
Percent

20
40

60
80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

Ti
m

e
to

 d
et

ec
t a

 c
on

fli
ct

 (s
ec

on
ds

)

(a
)

O
ld

es
t-

fi
rs

t
p
ri

o
ri

ti
za

ti
o
n
.

M
ea

n
:

4
0
.9

3
se

cs
.

M
ed

ia
n
:

3
5

se
cs

.
M

a
x
.:

1
2
8

se
cs

.

01020304050
Percent

20
40

60
80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

Ti
m

e
to

 d
et

ec
t a

 c
on

fli
ct

 (s
ec

on
ds

)

(b
)

N
ew

es
t-

fi
rs

t
p
ri

o
ri

ti
za

ti
o
n
.

M
ea

n
:

3
1
.5

1
se

cs
.

M
ed

ia
n
:

2
7

se
cs

.
M

a
x
.:

4
5

se
cs

.

F
ig

u
re

4
.1

2:
H

is
to

gr
am

s
o
f

co
n

fl
ic

t
ti

m
e-

to
-d

et
ec

ti
on

w
it

h
ol

d
es

t-
an

d
n

ew
es

t-
fi

rs
t

p
ri

or
it

iz
at

io
n
:

2
sl

av
e

n
o
d

es
.

81

Chapter 5

Related Work

In general, this dissertation’s related work can be divided into three groups, which will

be discussed in detail in each of the three respective sections of this chapter. Section 5.1

is regarding the research in software model inconsistency detection, which is a key in

dealing with higher-order design conflicts. Section 5.2 then introduces the prior work

regarding software model version control systems (VCSs) that are specifically constructed

to manage software models rather than source code. Lastly in Section 5.3, the existing

proactive conflict detection techniques and tools are discussed and compared to FLAME.

5.1 Detection of Inconsistencies in Software Models

It is important to note that design decisions are conceptual, so as conflicts between those

design decisions. Prior research has been directed to detecting those conflicts via tangible

software models that reflect the design decisions. A class of those conflicts on which this

dissertation focuses—the higher-order design conflicts—manifest themselves as inconsis-

tencies in the models, which are violations of a consistency rule or a semantic rule of

82

the system. Hence, detecting the inconsistencies that exist in the software model would

provide vital information in dealing with the higher-order design conflicts.

A substantial volume of research has been conducted in the software model inconsis-

tency detection area. Many techniques and tools [24, 45] target detection of consistency

rule violations in Unified Modeling Language (UML) [49], which is a widely used software

modeling notation in practice. There are also techniques that analyze software models

and provide crucial information that can be used to determine whether a system meets its

requirements, such as discrete-event simulation [56], Markov-chain-based reliability analy-

sis [65], or queueing-network-based performance analysis [4]. XTEAM [22] is one of those

techniques, and it was adopted by the FLAME instance developed for this dissertation.

FLAME exploits these software inconsistency detection techniques and tools in order

to proactively detect higher-order design conflicts. For example, the Detection Engines of

the FLAME instance introduced in this dissertation integrated XTEAM in order to de-

termine whether the model under design meets three different system properties: memory

usage (as in [23]), energy consumption (as in [58]), and message latency (as in [67]).

A software model cannot evolve without having inconsistencies. “Living with inconsis-

tency” is a concept to tolerate inconsistencies and exploit the information to push forward

the software development [5, 28]. On the other hand, having an inconsistency that has

been undetected and unknown to software architects is a risk since it is possible that the

work done after the inconsistency has been introduced may need to be reversed in the

process of resolving it. To minimize that risk, Argo/UML [51] has built-in design critics

that provide unobtrusive review of design and suggestions for improvements continuously,

i.e., as architects make modeling changes. While similar to FLAME’s proactive conflict

83

detection in the sense that the feedback is continuously provided, Argo/UML only targets

local inconsistencies. FLAME performs trial merging of modeling changes and invokes

the model analysis tools in the background to detect higher-order design conflicts.

5.2 Software Model Version Control

This section focuses on the VCSs that are specifically designed to manage software models

rather than source code. To cope with the challenges that arise when using a generic VCS

geared toward managing textual artifacts to manage graphical software models (recall

Section 2.1.3), a number of software model VCSs and the related research have appeared

to support software architects to track and organize modeling changes [2]. Techniques

that compute the “diffs” between independently modified copies of a software model [44,

48] have been proposed, which is an essential capability in versioning software models.

Altmanninger et al. argued that the current generation of VCSs are inflexible (i.e.,

inextensible) and limited to certain design environments [1]. They developed an extensible

software model VCS named AMOR [1,13] as an attempt to solve that problem.

The software model VCSs also support design conflict detection [2]. While most of

them detect conflicts by analyzing a set of states (e.g., saved files) of a model (called

the state-based detection), some implement the operation-based detection [8, 12, 38] that

detects conflicts from the sequence of modeling operations. The operation-based conflict

detection techniques compliment the state-based techniques by adding an extra dimension

of conflict detection. A noticeable benefit that an operation-based conflict detection

technique can provide is the ability to find the operation that caused a conflict [12].

84

Free-form, synchronized group editors (e.g. a whiteboard shared electronically via

the Internet) have also been proposed as a collaborative software design environment.

The common goal they share is to promote communication between software architects.

CAMEL [16] is a good example; it allows a team of architects simultaneously drawing

various kinds of diagrams. The architects using CAMEL can instantiate “whiteboards”

each of which is either a UML diagram or a free-form diagram. The changes the architects

make to those whiteboards are shared across as they are made. More recent tools in this

category have adopted multi-touch screens to further facilitate the collaboration [10,40].

There are also synchronized group editors that implement more sophisticated conflict

detection and resolution techniques. Our own tool CoDesign [8] is an extensible collabo-

rative software modeling framework that synchronizes modeling operations in real time.

It implements operation-based conflict detection, and notifies software architects with

conflict information as a conflict arises. An interesting instance in that group is Google

Docs [29], which supports real time group editing of documents including graphs. Google

Docs implements an algorithm called operational transformation [25,60] that guarantees

automatic resolution of synchronization conflicts without getting users’ attention.

Even though the synchronized group editors provide rich communication channels

between software architects and may prevent causing conflicts in the first place, they

may also distract the architects and lose parallelism in the case of rapid design. Each of

the two collaborative design approaches, the software model VCSs and the synchronized

group editors for software modeling, has its own pros and cons. There is an open question

regarding whether a hybrid of those can be built and what benefits it may provide [9].

85

FLAME improves the software model VCSs by detecting conflict in a proactive way.

While the existing software model VCSs are capable of managing software modeling

changes, they expose software architects to the risk of having undetected conflicts because

they only detect conflicts periodically (recall Section 2.2). FLAME mitigates that risk by

detecting conflicts as soon as the modeling operation that causes a conflict is performed.

5.3 Proactive Conflict Detection

The risk of having conflicts from using a copy-edit-merge style, asynchronous VCS is not

unique to collaborative software design. Collaborative software implementation also faces

an analogous challenge at the level of source code. A number of techniques and tools have

been reported, including those for proactive conflict detection [54].

Providing workspace awareness is an extensively studied aspect of conflict avoidance

and detection. Workspace awareness is “the up-to-the-minute knowledge of other par-

ticipants’ interactions with the shared workspace” [33]. FASTDash prevents potential

conflict situations (e.g., two developers editing the same file) by providing a visual pre-

sentation of the developers’ activities on shared files [11]. Some workspace awareness

tools analyze dependencies between program elements (files, types, or methods), and no-

tify developers of conflicting changes made to elements that depend on each other [21].

Palant́ır shows which shared artifacts have been edited by whom, in a less obtrusive way

by integrating the presentation into the development environment [55]. Syde [34] informs

developers of concurrent changes by maintaining an abstract syntax tree of the target

object-oriented system, interpreting code changes into tree operations, and using them

86

to filter conflict information. The tools in this group primarily detect synchronization

conflicts and dependency-based higher-order conflicts.

Another group of proactive conflict detection tools perform deeper analyses such as

compilation, unit testing, and so on. Safe-commit [66] proactively identifies “commit-

table” changes that will not make test cases fail by running them in the background.

Two tools in this group, Crystal [15] and WeCode [32], are closely related to FLAME.

Both of them proactively perform merging, compilation, and testing of new changes de-

velopers make to source code in the background and notify the developers if any of the

steps fails. Table 5.1 further compares those tools as well as Palant́ır to FLAME in detail.

FLAME differs from the existing tools in two ways: (1) exploiting its event-based

architecture, FLAME integrates off-the-shelf higher-order conflict detection tools and

offloads the potentially resource-intensive conflict detection, and (2) it synchronizes and

is capable of performing conflict detection per modeling operation, which enables earlier

conflict detection and pinpointing the specific operations that caused a conflict [12].

Moreover, in spite of the promising results reported from empirical studies and actual

use of proactive conflict detection for collaborative software implementation [11,14,21,53],

due to the differences between software design and implementation, it had not been clearly

known whether those techniques would positively impact collaborative software design

when implemented. This dissertation provides the initial evidence that shows proactive

conflict detection may benefit collaborative software design in practice.

87

T
ab

le
5.

1:
P

ro
ac

ti
v
e

C
on

fl
ic

t
D

et
ec

ti
on

S
tu

d
ie

s
C

om
p

ar
is

on
.

P
a
la

n
tí

r
[5

5]
W

eC
o
d
e

[3
2]

C
ry

st
al

[1
4]

F
L

A
M

E
[7

]

P
u

b
li

sh
ed

ye
ar

20
12

20
12

20
13

20
15

T
ar

ge
t

a
ct

iv
it

y
P

ro
gr

am
m

in
g

P
ro

gr
am

m
in

g
P

ro
gr

am
m

in
g

D
es

ig
n

T
ar

ge
t

a
rt

if
a
ct

P
ro

gr
am

co
d

e
P

ro
gr

am
co

d
e

P
ro

gr
am

co
d

e
S

of
tw

ar
e

m
o
d
el

M
er

ge
im

p
le

m
en

ta
ti

o
n

S
V

N
o
r

C
V

S
E

cl
ip

er
E

q
u

in
ox

M
er

cu
ri

al
or

G
it

It
se

lf

V
er

si
o
n

co
n
tr

o
l

m
ec

h
a
n

is
m

S
ta

te
-b

as
ed

S
ta

te
-b

as
ed

S
ta

te
-b

as
ed

O
p

er
at

io
n

-b
as

ed

M
er

ge
g
ra

n
u

la
ri

ty
A

li
n

e
of

co
d

e
A

st
ru

ct
u

ra
l

el
em

en
t

A
li

n
e

of
co

d
e

A
m

o
d

el
in

g
op

er
at

io
n

C
on

fl
ic

t
d

efi
n

it
io

n
D

ir
ec

t,
In

d
ir

ec
t

D
ir

ec
t,

In
d

ir
ec

t
T

ex
u

al
,

H
ig

h
er

-o
rd

er
S

y
n

ch
ro

n
iz

at
io

n
,

H
ig

h
er

-o
rd

er

D
et

ec
ti

o
n

fr
eq

u
en

cy
A

t
fi

le
sa

v
in

gs
,

A
t

fi
le

sa
v
in

gs
A

t
lo

ca
l

co
m

m
it

s
F

or
ea

ch
op

er
at

io
n

ti
m

er
ex

p
ir

at
io

n
s

E
va

lu
at

io
n

m
et

h
o
d

U
se

r
st

u
d

y
U

se
r

st
u

d
y

P
u

b
li

c
u

se
U

se
r

st
u

d
y

D
a
ta

co
ll

ec
ti

o
n

C
on

d
u

ct
ed

st
u

d
y

C
on

d
u

ct
ed

st
u

d
y

R
el

ea
se

d
C

ry
st

al
to

p
u

b
li

c
C

on
d

u
ct

ed
st

u
d

y

w
it

h
40

u
se

rs
w

it
h

21
u

se
rs

an
d

ga
th

er
ed

re
sp

on
se

w
it

h
90

u
se

rs

U
se

r
st

u
d

y
te

a
m

si
ze

2
2

N
/A

2

88

Chapter 6

Concluding Remarks

Higher-order software design conflicts are inevitable in collaborative software design. The

asynchrony of today’s copy-edit-merge style software model version control systems paral-

lelizes individual design work and may achieve higher productivity, but at the same time,

it exposes the architects to the risk of making modeling changes without being aware of

the presence of a higher-order design conflict. That may lead to the reversal of those

changes in the process of resolving the conflict, which results in wasted effort. For the

analogous problem at the level of source code, the proactive conflict detection strategy

has been proposed, and applications of it have shown promising results from empirical

studies and actual use. However, those existing proactive conflict detection tools are con-

structed to deal with the code-level conflicts and do not work well with the design-level

conflicts due to the inherent differences between software design and implementation.

This dissertation presented a solution, FLAME, an extensible, operation-based collab-

orative software design framework that proactively detects higher-order conflicts. FLAME

minimizes the risk by performing a trial synchronization and conflict detection in the back-

ground, as frequent as for each modeling operation performed by the architects. FLAME’s

89

novel architecture is specifically designed to support collaborative design, which enables

integrating the appropriate modeling tool and consistency checkers for the target sys-

tem’s domain. Exploiting its event-based architecture, FLAME offloads the potentially

computationally-expensive conflict detection activities to remote nodes called Detection

Engines. Each Detection Engine is responsible for invoking an off-the-shelf conflict de-

tection tool on a particular version of the model that the Detection Engine automatically

derives by merging modeling operations from different architects. In order to prevent the

Detection Engines from being overwhelmed by a large amount of conflict detection to per-

form, FLAME provides facilities to further distribute the burden of conflict detection to

a set of cloud-based nodes called slave nodes. FLAME also implements an algorithm that

prioritizes conflict detection instances a Detection Engine processes in order to minimize

the delay in conflict detection that may occur when the available computation resources

for conflict detection are scarce. That algorithm guarantees a reasonable worst-case time

to detect each higher-order conflict outstanding at a given moment.

In this dissertation, FLAME has been evaluated both empirically and analytically.

In order to validate whether or to what extent providing proactive conflict detection

impacts the collaborative software design cost, two user studies were conducted with

total of 90 participants, each of which targeted the two Detection Engines introduced in

this dissertation: the Global Engine and the Head-and-Local Engine. In both of the user

studies, it was observed that the participants who were provided with proactive conflict

detection (1) had more opportunity to communicate with each other, (2) detected and

resolved higher-order design conflicts earlier and more quickly, and (3) produced higher

quality models in the same amount of time. Moreover, to our best knowledge, these

90

user studies provide the first reported empirical evidence showing that proactive conflict

detection positively impacts the collaborative design cost. Also, the results from the

three analytical studies showed that FLAME (1) minimized the delay in conflict detection

especially when a Detection Engine had a sufficient number of slave nodes at its disposal

and (2) added only a negligible amount of overhead in performing conflict detection even

in collaborative design scenarios with a large team of architects. Most notably, with

FLAME’s prioritization algorithm implemented, all conflicts either had been resolved or

were detected in the amount of time 2·t (where t is the longest time required to process one

conflict detection instance with no delay), when the available computation resources for

conflict detection were limited. Those results together indicate the potential in FLAME

that it can handle the need in proactive conflict detection of a real-world collaborative

design project that involves a large team of participating software architects.

FLAME is not limited to the form as presented in this dissertation, and variations of it

may also benefit collaborating software architects and positively impact the collaborative

design cost. FLAME can incorporate other Detection Engines beyond the two introduced

in this dissertation that derive a different version of the model on which to perform conflict

detection. Detection Engines may also integrate other detection techniques including the

ones that are intended for synchronization conflicts. While not explicitly studied in this

dissertation, variations in the interface via which FLAME presents conflict information

to the architects may also influence the way the architects form conflict awareness.

Implementing operation transformation [25,60]—an algorithm that automatically re-

solves synchronization conflicts—on top of FLAME would open up a variety of possible

91

future work that assist collaborating software architects. In fact, operational transforma-

tion can readily be implemented on top of FLAME because FLAME already implements

operation-based version control on which the algorithm relies. Each architect in a team

often designs different parts of a system, and different parts may need different kinds of

design collaboration. FLAME can potentially be configured to support either the copy-

edit-merge style version control or the synchronized group editing for different parts of

the system by implementing operational transformation to fulfill such needs.

FLAME provides a foundation for exploring several other issues with design-level

conflict detection. These include exploration of different ways of delivering feedback to

architects, assessment of the effect of variations on the immediacy with which feedback is

delivered, prioritization of the delivery of analysis results, and exploration of the utility of

proactively analyzing software models for properties of whose importance the architects

may be unaware. Conflict resolution support would be an instance of those. For example,

possible actions that architects may take to resolve an existing conflict can be populated

in a speculative fashion. FLAME may then run simultaneous analyses on the versions of

the model in which each of those actions would result, and suggest a small set of resolution

options from which the architects choose in order to expedite the resolution process.

Assessing the root cause of a higher-order conflict is another area in which FLAME

may benefit collaborating architects. When a higher-order conflict arises, it is often am-

biguous which specific set of modeling operations caused the conflict and who performed

them. Knowing the list of those operations is the key to resolving the conflict, but the

architects today have to manually inspect the model in order to find them. Exploiting

FLAME’s facilities that distribute conflict detection activities to remote nodes, different

92

combinations of the past modeling operations can be derived and checked in parallel to

quickly find out which particular operations have contributed in causing the conflict.

93

References

[1] Kerstin Altmanninger, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Mar-
tina Seidl, Wieland Schwinger, and Manuel Wimmer. AMOR – Towards Adapt-
able Model Versioning. In Proceedings of the International Workshop on Model Co-
Evolution and Consistency Management, in conjunction with MODELS, volume 8,
pages 4–50, 2008.

[2] Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. A Survey on Model
Versioning Approaches. International Journal of Web Information Systems (IJWIS),
5(3):271–304, 2009.

[3] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. A View of Cloud Computing. Communications of the ACM, 53(4):50–58,
2010.

[4] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni.
Model-Based Performance Prediction in Software Development: A Survey. IEEE
Transactions on Software Engineering, 30(5):295–310, 2004.

[5] Robert Balzer. Tolerating Inconsistency. In Proceedings of the 13th International
Conference on Software Engineering (ICSE), pages 158–165. IEEE, 1991.

[6] Jae young Bang, Ivo Krka, Nenad Medvidovic, Naveen Kulkarni, and Srinivas Pad-
manabhuni. How Software Architects Collaborate: Insights from Collaborative Soft-
ware Design in Practice. In Proceedings of the 6th International Workshop on Coop-
erative and Human Aspects of Software Engineering (CHASE), pages 41–48. IEEE,
May 2013.

[7] Jae young Bang and Nenad Medvidivoc. Proactive Detection of Higher-Order Soft-
ware Design Conflicts. In Proceedings of the 12th Working IEEE/IFIP Conference
on Software Architecture (WICSA), May 2015.

[8] Jae young Bang, Daniel Popescu, George Edwards, Nenad Medvidovic, Naveen
Kulkarni, Girish M Rama, and Srinivas Padmanabhuni. CoDesign: A Highly Ex-
tensible Collaborative Software Modeling Framework. In Proceedings of the 32nd
International Conference on Software Engineering (ICSE), volume 2, pages 243–246.
ACM, May 2010.

94

[9] Jae young Bang, Daniel Popescu, and Nenad Medvidovic. Enabling Workspace
Awareness for Collaborative Software Modeling. The Future of Collaborative Soft-
ware Development at the ACM Conference on Computer Supported Cooperative Work
(FutureCSD), February 2012.

[10] Mohammed Basheri and Liz Burd. Exploring the Significance of Multitouch Ta-
bles in Enhancing Collaborative Software Design Using UML. In Proceedings of the
Frontiers in Education Conference (FIE), pages 1–5. IEEE, 2012.

[11] Jacob T. Biehl, Mary Czerwinski, Greg Smith, and George G. Robertson. FAST-
Dash: A Visual Dashboard for Fostering Awareness in Software Teams. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (CHI),
pages 1313–1322. ACM, 2007.

[12] Xavier Blanc, Isabelle Mounier, Alix Mougenot, and Tom Mens. Detecting Model In-
consistency through Operation-based Model Construction. In Proceedings of the 30th
International Conference on Software Engineering (ICSE), pages 511–520. IEEE,
2008.

[13] Petra Brosch, Martina Seidl, Konrad Wieland, Manuel Wimmer, and Philip Langer.
We can work it out: Collaborative Conflict Resolution in Model Versioning. In
Proceedings of the 11th European Conference on Computer Supported Cooperative
Work (ECSCW), pages 207–214. Springer, September 2009.

[14] Yuriy Brun, Reid Holmes, M. Ernst, and David Notkin. Early Detection of Col-
laboration Conflicts and Risks. IEEE Transactions on Software Engineering (TSE),
39:1358–1375, October 2013.

[15] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. Crystal: Precise
and Unobtrusive Conflict Warnings. In Proceedings of the 8th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE), pages 444–447. ACM, 2011.

[16] Marcelo Cataldo, Charles Shelton, Yongjoon Choi, Yun-Yin Huang, Vytesh Ramesh,
Darpan Saini, and Liang-Yun Wang. Camel: A Tool for Collaborative Distributed
Software Design. In Proceedings of the 4th International Conference on Global Soft-
ware Engineering (ICGSE), pages 83–92. IEEE, 2009.

[17] Ben Collins-Sussman. The Subversion Project: Buiding a Better CVS. Linux Jour-
nal, 2002(94):3, 2002.

[18] Ben Collins-Sussman, Brian Fitzpatrick, and Michael Pilato. Version Control with
Subversion. O’Reilly Media, Inc., 2004.

[19] Catarina Costa and Leonardo Murta. Version Control in Distributed Software De-
velopment: A Systematic Mapping Study. In Proceedings of the 8th International
Conference on Global Software Engineering (ICGSE), pages 90–99. IEEE, 2013.

95

[20] Daniela Damian, Remko Helms, Irwin Kwan, Sabrina Marczak, and Benjamin
Koelewijn. The Role of Domain Knowledge and Cross-Functional Communication in
Socio-Technical Coordination. In Proceedings of the 35th International Conference
on Software Engineering (ICSE), pages 442–451. IEEE, 2013.

[21] Prasun Dewan and Rajesh Hegde. Semi-Synchronous Conflict Detection and Reso-
lution in Asynchronous Software Development. In Proceedings of the 10th European
Conference on Computer Supported Cooperative Work (ECSCW), pages 159–178.
Springer, 2007.

[22] George Edwards. The eXtensible Tool-chain for Evaluation of Architectural Mod-
els. http://softarch.usc.edu/~gedwards/xteam.html, 2014. [Online; accessed
March 4, 2015].

[23] George Edwards, Chiyoung Seo, and Nenad Medvidovic. Model Interpreter Frame-
works: A Foundation for the Analysis of Domain-Specific Software Architectures.
Journal of Universal Computer Science, 14(8):1182–1210, 2008.

[24] Alexander Egyed. Automatically Detecting and Tracking Inconsistencies in Software
Design Models. IEEE Transactions on Software Engineering (TSE), 37(2):188–204,
2011.

[25] Clarence A. Ellis and Simon J. Gibbs. Concurrency Control in Groupware Systems.
Proceedings of the ACM SIGMOD International Conference on Management of Data,
18(2):399–407, 1989.

[26] EMFStore. http://eclipse.org/emfstore/. [Online; accessed March 4, 2015].

[27] Git. http://git-scm.com, 2014. [Online; accessed March 4, 2015].

[28] Michael Goedicke, Torsten Meyer, and Gabriele Taentzer. Viewpoint-Oriented Soft-
ware Development by Distributed Graph Transformation: Towards a Basis for Living
with Inconsistencies. In Proceedings of the International Symposium on Requirements
Engineering (RE), pages 92–99. IEEE, 1999.

[29] Google. Google Docs. https://docs.google.com, 2014. [Online; accessed March
4, 2015].

[30] Google. Google Compute Engine. https://cloud.google.com/compute/, 2015.
[Online; accessed March 4, 2015].

[31] Dick Grune. Concurrent Versions System, A Method for Independent Cooperation.
Report IR-114, Vrije University, Amsterdam, 1986.

[32] Mário Lúıs Guimarães and António Rito Silva. Improving Early Detection of Soft-
ware Merge Conflicts. In Proceedings of the 34th International Conference on Soft-
ware Engineering (ICSE), pages 342–352. IEEE, 2012.

96

[33] Carl Gutwin and Saul Greenberg. Workspace Awareness for Groupware. In Confer-
ence Companion on Human Factors in Computing Systems (CHI), pages 208–209.
ACM, 1996.

[34] Lile Hattori and Michele Lanza. Syde: A Tool for Collaborative Software Develop-
ment. In Proceedings of the 32nd International Conference on Software Engineering
(ICSE), volume 2, pages 235–238. ACM, May 2010.

[35] James D. Herbsleb and Audris Mockus. An Empirical Study of Speed and Com-
munication in Globally Distributed Software Development. IEEE Transactions on
Software Engineering, 29(6):481–494, 2003.

[36] Pamela J. Hinds and Diane E. Bailey. Out of Sight, Out of Sync: Understanding
Conflict in Distributed Teams. Organization Science, 14(6):615–632, 2003.

[37] Institute for Software Integrated Systems, Vanderbilt University. Generic Model-
ing Environment. http://isis.vanderbilt.edu/projects/gme/, 2014. [Online;
accessed March 4, 2015].

[38] Maximilian Koegel, Jonas Helming, and Stephan Seyboth. Operation-based Conflict
Detection and Resolution. In Proceedings of the ICSE Workshop on Comparison and
Versioning of Software Models, pages 43–48. IEEE Computer Society, 2009.

[39] Philippe Kruchten. The Software Architect. In Software Architecture, pages 565–
583. Springer, 1999.

[40] Dastyni Loksa, Nicolas Mangano, Thomas D. LaToza, and André van der Hoek.
Enabling a Classroom Design Studio with a Collaborative Sketch Design Tool. In
Proceedings of the International Conference on Software Engineering (ICSE), pages
1073–1082. IEEE Press, 2013.

[41] Sam Malek, Marija Mikic-Rakic, and Nenad Medvidovic. A Style-aware Architec-
tural Middleware for Resource-constrained, Distributed Systems. IEEE Transactions
on Software Engineering (TSE), 31(3):256–272, 2005.

[42] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic Dif-
ferencing for Activity Diagrams. In Proceedings of the 13th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE), pages 179–189. ACM, 2011.

[43] Chris A. Mattmann, Christopher S. Lynnes, Luca Cinquini, Paul M. Ramirez, An-
drew F. Hart, Dean Williams, Duane Waliser, and Pamela Rinsland. Next Gen-
eration Cyberinfrastructure to Support Comparison of Satellite Observations with
Climate Models. In Proceedings of European Space Agency Conference on Big Data
from Space (BiDS), November 2014.

97

[44] Akhil Mehra, John Grundy, and John Hosking. A Generic Approach to Supporting
Diagram Differencing and Merging for Collaborative Design. In Proceedings of the
20th International Conference on Automated Software Engineering (ASE), pages
204–213. ACM, 2005.

[45] Tom Mens, Ragnhild Van Der Straeten, and Maja D’Hondt. Detecting and Resolving
Model Inconsistencies Using Transformation Dependency Analysis. In Proceedings
of the 9th International Conference on Model-Driven Engineering Languages and
Systems (MoDELS), pages 200–214. Springer, 2006.

[46] Leonardo Murta, Chessman Corrêa, João Gustavo Prudêncio, and Cláudia Werner.
Towards Odyssey-VCS 2: Improvements over a UML-based Version Control Sys-
tem. In Proceedings of the International Workshop on Comparison and Versioning
of Software Models (CVSM), pages 25–30. ACM, 2008.

[47] Christian Nentwich, Licia Capra, Wolfgang Emmerich, and Anthony Finkelstein.
xlinkit: A Consistency Checking and Smart Link Generation Service. ACM Trans-
actions on Internet Technology (TOIT), 2(2):151–185, 2002.

[48] Tien N. Nguyen, Ethan V. Munson, John T. Boyland, and Cheng Thao. An In-
frastructure for Development of Object-Oriented, Multi-Level Configuration Man-
agement Services. In Proceedings of the 27th International Conference on Software
Engineering (ICSE), pages 215–224. ACM, 2005.

[49] Object Management Group (OMG). Unified Modeling Language. http://www.omg.
org. [Online; accessed March 4, 2015].

[50] Gary M. Olson and Judith S. Olson. Distance Matters. Human-Computer Interac-
tion (HCI), 15(2):139–178, 2000.

[51] Jason E. Robbins and David F. Redmiles. Cognitive Support, UML Adherence, and
XMI Interchange in Argo/UML. Information and Software Technology, 42(2):79–89,
2000.

[52] Marc J. Rochkind. The Source Code Control System. IEEE Transactions on Soft-
ware Engineering (TSE), 1(4):364–370, 1975.

[53] Anita Sarma, David Redmiles, and André van der Hoek. Empirical Evidence of
the Benefits of Workspace Awareness in Software Configuration Management. In
Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE), pages 113–123. ACM, 2008.

[54] Anita Sarma, David Redmiles, and André van der Hoek. Categorizing the Spectrum
of Coordination Technology. IEEE Computer, 43(6):61–67, 2010.

[55] Anita Sarma, David F. Redmiles, and André van der Hoek. Palant́ır: Early Detection
of Development Conflicts Arising from Parallel Code Changes. IEEE Transactions
on Software Engineering (TSE), 38(4):889–908, 2012.

98

[56] Thomas J. Schriber and Daniel T. Brunner. Inside Discrete-Event Simulation Soft-
ware: How It Works and Why It Matters. In Simulation Conference, 2005 Proceed-
ings of the Winter. IEEE, 2005.

[57] Bikram Sengupta, Satish Chandra, and Vibha Sinha. A Research Agenda for Dis-
tributed Software Development. In Proceedings of the 28th International Conference
on Software Engineering (ICSE), pages 731–740. ACM, 2006.

[58] Chiyoung Seo, Sam Malek, and Nenad Medvidovic. An Energy Consumption Frame-
work for Distributed Java-Based Systems. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering, pages 421–
424. ACM, 2007.

[59] Darja Šmite, Claes Wohlin, Tony Gorschek, and Robert Feldt. Empirical Evidence
in Global Software Engineering: A Systematic Review. Empirical Software Engi-
neering, 15(1):91–118, 2010.

[60] Chengzheng Sun and David Chen. A Multi-Version Approach to Conflict Resolution
in Distributed Groupware Systems. In Proceedings of the 20th International Confer-
ence on Distributed Computing Systems (ICDCS), pages 316–325. IEEE, 2000.

[61] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. Software Architecture:
Foundations, Theory, and Practice. Wiley Publishing, 2009.

[62] Walter F. Tichy. RCS A System for Version Control. Software: Practice and
Experience, 15(7):637–654, 1985.

[63] University of California. BOINC. http://boinc.berkeley.edu. [Online; accessed
March 4, 2015].

[64] Bernhard Westfechtel. Merging of EMF Models. Software & Systems Modeling,
13(2):757–788, 2014.

[65] James A. Whittaker and Michael Thomason. A Markov Chain Model for Statisti-
cal Software Testing. IEEE Transactions on Software Engineering, 20(10):812–824,
1994.

[66] Jan Wloka, Barbara Ryder, Frank Tip, and Xiaoxia Ren. Safe-Commit Analysis to
Facilitate Team Software Development. In Proceedings of the 31st International Con-
ference on Software Engineering (ICSE), pages 507–517. IEEE Computer Society,
2009.

[67] Murray Woodside. Tutorial Introduction to Layered Modeling of Software Perfor-
mance. Carleton University. http://sce.carleton.ca/rads/, 2005. [Online; ac-
cessed March 4, 2015].

99

Appendix A

Design Tasks from the User Studies

This appendix presents two samples of the design tasks given to the participants of the

two user studies conducted for this dissertation (recall Section 4).

100

A.1 Global Engine User Study Design Tasks

Task 1
The NGCA system has these non ​functional property (NFP) global requirements:

● The response rate (number of responses / number of requests) must be greater than 95%.
● The average latency at the monitored interfaces must be less than 40

● The overall energy consumption must be less than 10,000,000

● The maximum memory use must be less than 800

Task Set # Task

Task 1­1 It has been 10 years since the client company began using the legacy SalinityReqGen component in
their NGCA. The client company is not satisfied with the rate at which SalinityReqGen can create and
send requests, and they want to replace the component with newer ones.
You did a thorough search with which newer components you could replace SalinityReqGen, and
eventually found three with following characteristics:

Option Execution time of the Task
generate in Process
generateRequest

Memory usage of the Task
generate in Process
generateRequest

SalinityReqGen’s
corresponding Host energy
coefficients

1 4 [↓↓] 250 [↑] 50/200/65/240 [↑]

2 7 [↓] 3 [as­is] 50/200/65/240 [↑]

3 6 [↓] 250 [↑] 12/45/18/48 [as­is]

You goal is to find which combination(s) of the three above for each of SalinityReqGen (e.g. option 2 for
User1, option 3 for User2, and option 1 for User3) that the current NGCA has makes the most number of
requests in the given amount of time (2,500 units of time).

Task 1­2 The client company was hit by a huge financial downturn last year, and they desperately need to cut cost
down. Unfortunately, the budget for their NGCA has been drastically reduced as a result. The problem is
that they have continuously been paying license for the use of the two FTP connectors that they
implemented in the NGCA. They want to replace the connectors with cheaper ones while maintaining the
minimum necessary throughput.
You did a thorough search with which cheaper connectors you could replace those connectors, and
eventually found three with following characteristics:

Option $/yr Execution time of the
Task forward in Process
forwardResponse

Memory usage of the
Task forward in Process
forwardResponse

FTP connector’s
corresponding Host energy
coefficients

1 1.1k 7 [↑] 15 [↑] 12/40/20/70 [↑]

2 2.3k 0 [as­is] 1 [as­is] 12/40/20/70 [↑]

3 2.1k 0 [as­is] 15 [↑] 11/40/13/45 [as­is]

Your goal is to find which combination(s) of the three above for each of the FTP connectors (e.g. option 2
for FTP_S and option 3 for FTP_T) that the current NGCA has makes the cost the cheapest.

 Figure A.1: A Global Engine user study design task sample.

101

A.2 Head-and-Local Engine Study Design Tasks

Task 1
System Requirements
The BOINC NPC system has the following three system requirements:

1. The average latency at the monitored interface (ToBOINC) must be less than 550.
2. The overall energy consumption must be less than 4,000,000.
3. The maximum memory use at any component/connector must be less than 30,000.

Task for Student 1
You are the architect who is responsible for the server-side of BOINC NPC. Figure 1 depicts the BOINC NPC model. On
the right side, there are two "task generator components" (SubsetSumGen and SATGen) that generate the Task events and
forward them to COConn. To satisfy the client’s request, you searched for with which alternative components you could
replace those task generator components, and eventually found two, each of which has the following characteristics:

The Alternatives
Option Execution time of the Task

generate in Process
generateTask

Memory usage of the Task
generate in Process
generateTask

The four energy attributes of the task generator
component's corresponding Host (top to bottom)

Default 8.0 3 55.24 82.45 101.28 64.99
1 7.5 5500 182.00 217.00 101.28 64.99
2 7.0 11000 330.00 429.00 101.28 64.99

The Goal
You goal is to find the best selection for each of the task generator components (e.g., option 1 for SubsetSumGen and
option 2 for SATGen) from the three options above that will generate the most number of computation tasks. After you
select an option for a component, replace all six attributes related to that component (column 2 to 7 in the table above) to
those of the option you selected. You may choose not to replace a component in order to meet a system requirement. Try
different selections to find the best one. Make sure your model satisfies all the system requirements above.

Task for Student 2
You are the architect who is responsible for the client-side of BOINC NPC. Figure 1 depicts the BOINC NPC model. On
the left side, there are two "computation components" (Clients and GoogleComputeEngine) on which the NP-complete
computation tasks are actually performed. To satisfy the client’s request, you searched for with which alternative
components you could replace those computation components, and eventually found two, each of which has the following
characteristics:

The Alternatives
Option Execution time of the Task

perform in Process
performComputation

Memory usage of the Task
perform in Process
performComputation

The four energy attributes of the computation
component's corresponding Host (top to bottom)

Default 500 27 105.11 129.87 150.01 101.86
1 350 39 312.00 341.00 150.01 101.86
2 200 92 514.00 755.00 150.01 101.86

The Goal
You goal is to find the best selection for each of the computation components (e.g., option 2 for Clients and option 1 for
GoogleComputeEngine) from the three options above that will have the shortest computation time. After you select an
option for a component, replace all six attributes related to that component (column 2 to 7 in the table above) to those of
the option you selected. You may choose not to replace a component in order to meet a system requirement. Try different
selections to find the best one. Make sure you also satisfy the system requirements given above.

Figure A.2: A Head-and-Local Engine user study design task sample.

102

